Solveeit Logo

Question

Question: If the roots of the quadratic equation \(ax^2+bx+c=0\) are \(\frac{k}{k+1}\) and \(\frac{k+1}{k+2}\)...

If the roots of the quadratic equation ax2+bx+c=0ax^2+bx+c=0 are kk+1\frac{k}{k+1} and k+1k+2\frac{k+1}{k+2}, then a+b+ca\frac{a+b+c}{a} equals

A

1k2+3k+2\frac{1}{k^2+3k+2}

B

k2+3k+21\frac{k^2+3k+2}{1}

C

k+1k+2\frac{k+1}{k+2}

D

kk+1\frac{k}{k+1}

Answer

1k2+3k+2\frac{1}{k^2+3k+2}

Explanation

Solution

Let the roots of the quadratic equation ax2+bx+c=0ax^2+bx+c=0 be α=kk+1\alpha = \frac{k}{k+1} and β=k+1k+2\beta = \frac{k+1}{k+2}.

We are asked to find the value of a+b+ca\frac{a+b+c}{a}. We can rewrite this expression as: a+b+ca=aa+ba+ca=1+ba+ca\frac{a+b+c}{a} = \frac{a}{a} + \frac{b}{a} + \frac{c}{a} = 1 + \frac{b}{a} + \frac{c}{a} From Vieta's formulas, we know that for a quadratic equation ax2+bx+c=0ax^2+bx+c=0: Sum of roots: α+β=ba\alpha + \beta = -\frac{b}{a} Product of roots: αβ=ca\alpha \beta = \frac{c}{a}

Substituting these into the expression for a+b+ca\frac{a+b+c}{a}: a+b+ca=1(α+β)+αβ\frac{a+b+c}{a} = 1 - (\alpha + \beta) + \alpha \beta This expression is algebraically equivalent to (1α)(1β)(1-\alpha)(1-\beta): (1α)(1β)=1βα+αβ=1(α+β)+αβ(1-\alpha)(1-\beta) = 1 - \beta - \alpha + \alpha\beta = 1 - (\alpha + \beta) + \alpha\beta Now, let's calculate 1α1-\alpha and 1β1-\beta using the given roots: 1α=1kk+1=(k+1)kk+1=1k+11 - \alpha = 1 - \frac{k}{k+1} = \frac{(k+1) - k}{k+1} = \frac{1}{k+1} 1β=1k+1k+2=(k+2)(k+1)k+2=k+2k1k+2=1k+21 - \beta = 1 - \frac{k+1}{k+2} = \frac{(k+2) - (k+1)}{k+2} = \frac{k+2-k-1}{k+2} = \frac{1}{k+2} Now, we multiply these two results: a+b+ca=(1α)(1β)=(1k+1)(1k+2)\frac{a+b+c}{a} = (1-\alpha)(1-\beta) = \left(\frac{1}{k+1}\right) \left(\frac{1}{k+2}\right) a+b+ca=1(k+1)(k+2)\frac{a+b+c}{a} = \frac{1}{(k+1)(k+2)} Expanding the denominator, we get: (k+1)(k+2)=k2+2k+k+2=k2+3k+2(k+1)(k+2) = k^2 + 2k + k + 2 = k^2 + 3k + 2 Therefore, a+b+ca=1k2+3k+2\frac{a+b+c}{a} = \frac{1}{k^2 + 3k + 2}