Solveeit Logo

Question

Question: If the roots of the quadratic equation \(k{{x}^{2}}+\left( a+b \right)x+ab\) are \(-1,-b\), find the...

If the roots of the quadratic equation kx2+(a+b)x+abk{{x}^{2}}+\left( a+b \right)x+ab are 1,b-1,-b, find the value of kk?

Explanation

Solution

We first take the general formula of roots for quadratic equation. We apply the roots 1,b-1,-b for the equation kx2+(a+b)x+abk{{x}^{2}}+\left( a+b \right)x+ab. Then we use the relation of the ratio of roots being equal to find the value of kk.

Complete step-by-step solution:
We know that for quadratic equation ax2+bx+c=0a{{x}^{2}}+bx+c=0, if the roots are m,nm,n then we can say that
m+n=bam+n=-\dfrac{b}{a} and mn=camn=\dfrac{c}{a}.
Let's use the given roots 1,b-1,-b for the equation kx2+(a+b)x+abk{{x}^{2}}+\left( a+b \right)x+ab.
Therefore, 1b=a+bk-1-b=-\dfrac{a+b}{k} and abk=b\dfrac{ab}{k}=b.
Also, we know that the roots 1,b-1,-b will satisfy the equation kx2+(a+b)x+abk{{x}^{2}}+\left( a+b \right)x+ab.
We can put the value in the equation to find the final value of the equation as 0.
We put x=1x=-1 in kx2+(a+b)x+ab=0k{{x}^{2}}+\left( a+b \right)x+ab=0.
So, k(1)2+(a+b)(1)+ab=0k{{\left( -1 \right)}^{2}}+\left( a+b \right)\left( -1 \right)+ab=0. Simplifying we get

& k{{\left( -1 \right)}^{2}}+\left( a+b \right)\left( -1 \right)+ab=0 \\\ & \Rightarrow k-a-b+ab=0 \\\ & \Rightarrow k=a+b-ab \\\ \end{aligned}$$ Now, we put $x=-b$ in $k{{x}^{2}}+\left( a+b \right)x+ab=0$. So, $k{{\left( -b \right)}^{2}}+\left( a+b \right)\left( -b \right)+ab=0$. Simplifying we get $$\begin{aligned} & k{{\left( -b \right)}^{2}}+\left( a+b \right)\left( -b \right)+ab=0 \\\ & \Rightarrow k{{b}^{2}}-ab-{{b}^{2}}+ab=0 \\\ & \Rightarrow k{{b}^{2}}={{b}^{2}} \\\ & \Rightarrow k=\dfrac{{{b}^{2}}}{{{b}^{2}}}=1 \\\ \end{aligned}$$ The value of $k$ is 1. **Note:** We need to remember that we can also solve the equations $-1-b=-\dfrac{a+b}{k}$ and $\dfrac{ab}{k}=b$ to find the value of $a$ and $b$ to solve the problem. The equation becomes ${{x}^{2}}+\left( a+b \right)x+ab$ which also gives the value of $a$ and $b$.