Question
Question: If the roots of the equation \(x^{2} - 5x + 16 = 0\) are α, β and the roots of equation \(x^{2} + px...
If the roots of the equation x2−5x+16=0 are α, β and the roots of equation x2+px+q=0 are α2+β2, αβ/2, then
A
p=1,q=−56
B
p=−1,q=−56
C
p=1,q=56
D
p=−1,q=56
Answer
p=−1,q=−56
Explanation
Solution
Since roots of the equation x2−5x+16=0 are α,β.
⇒ α+β=5,αβ=16 and α2+β2+2αβ=−p
⇒(α+β)2−2αβ+2αβ=−p ⇒ 25−2(16)+216=−p ⇒ p=−1
and (α2+β2)(2αβ)=q ⇒ [(α+β)2−2αβ]2αβ=q
⇒ (25−32)8=q ⇒ q=−56