Solveeit Logo

Question

Question: If the roots of the equation \(\left( p ^ { 2 } + q ^ { 2 } \right) x ^ { 2 }\) \(a^{2} + c^{2} = - ...

If the roots of the equation (p2+q2)x2\left( p ^ { 2 } + q ^ { 2 } \right) x ^ { 2 } a2+c2=aba^{2} + c^{2} = - ab + a2c2=aba^{2} - c^{2} = - ab be real and equal, then a2c2=aba^{2} - c^{2} = abwill be in.

A

A.P.

B

G.P.

C

H.P.

D

None of these

Answer

G.P.

Explanation

Solution

Given equation is

ad+bc=0ad + bc = 0

Roots are real and equal, then

ab=cd\frac{a}{b} = \frac{c}{d}

x22(1+3k)x+x^{2} - 2(1 + 3k)x +

7(3+2k)=07(3 + 2k) = 0

1,1091, - \frac{10}{9}2,1092, - \frac{10}{9}

Hence 3,1093, - \frac{10}{9}. Thus p, q, r in G.P.