Solveeit Logo

Question

Question: If the roots of the equation $kx^3 - 18x^2 - 36x + 8 = 0$ are in harmonic progression, then $k =$...

If the roots of the equation kx318x236x+8=0kx^3 - 18x^2 - 36x + 8 = 0 are in harmonic progression, then k=k =

Answer

81

Explanation

Solution

Let the roots be rr, ss, and tt. Since they are in harmonic progression (HP), their reciprocals are in arithmetic progression (AP), so

2s=1r+1t2rt=s(r+t).\frac{2}{s} = \frac{1}{r} + \frac{1}{t} \quad \Longrightarrow \quad 2rt = s(r+t).

Using Vieta’s formulas for the cubic

kx318x236x+8=0,kx^3 - 18x^2 - 36x + 8 = 0,

(dividing by kk), we have:

r+s+t=18k,rs+rt+st=36k,rst=8k.r+s+t = \frac{18}{k}, \quad rs+rt+st = -\frac{36}{k}, \quad rst = -\frac{8}{k}.

Express r+tr+t and rtrt in terms of ss:

r+t=18ks,r+t = \frac{18}{k} - s, rt=rsts=8ks.rt = \frac{rst}{s} = -\frac{8}{k s}.

Plug these into the HP condition:

2(8ks)=s(18ks)16ks=18sks2.2\left(-\frac{8}{k s}\right) = s\left(\frac{18}{k}-s\right) \quad \Longrightarrow \quad -\frac{16}{k s} = \frac{18s}{k} - s^2.

Multiplying both sides by ksk s:

16=18s2ks3.-16 = 18 s^2 - k s^3.

Rearrange:

ks318s216=0.(1)k s^3 - 18s^2 - 16 = 0. \quad (1)

Note that ss is a root of the original equation. Substituting ss in the polynomial (after multiplying by kk):

ks318s236s+8=0.(2)k s^3 - 18s^2 - 36s + 8 = 0. \quad (2)

Subtract equation (1) from (2):

[ks318s236s+8][ks318s216]=36s+24=0.[k s^3 - 18s^2 - 36s + 8] - [k s^3 - 18s^2 - 16] = -36s + 24 = 0.

Thus,

36s+24=0s=2436=23.-36s + 24 = 0 \quad \Longrightarrow \quad s = \frac{24}{36} = \frac{2}{3}.

Now substitute s=23s = \frac{2}{3} into equation (1):

k(23)318(23)216=0.k\left(\frac{2}{3}\right)^3 - 18\left(\frac{2}{3}\right)^2 - 16 = 0.

Calculate:

k827184916=08k27816=0,k \cdot \frac{8}{27} - 18\cdot \frac{4}{9} - 16 = 0 \quad \Longrightarrow \quad \frac{8k}{27} - 8 - 16 = 0, 8k2724=08k27=24,\frac{8k}{27} - 24 = 0 \quad \Longrightarrow \quad \frac{8k}{27} = 24, k=24×278=81.k = 24 \times \frac{27}{8} = 81.