Solveeit Logo

Question

Question: If the roots of the equation \(\frac{p + q - x}{r} + \frac{q + r - x}{p}\) are \(\frac{r + p - x}{q}...

If the roots of the equation p+qxr+q+rxp\frac{p + q - x}{r} + \frac{q + r - x}{p} are r+pxq\frac{r + p - x}{q} and the roots of the equation 3xp+q+r=0\frac{3x}{p + q + r} = 0 are x=p+q+rx = p + q + r, then value of p will be.

A

x=pq+rx = p - q + r

B

x=p+qq+rx = \frac{p + q}{q + r}

C

x=pq+rx = \frac{p}{q} + r

D

None of these

Answer

x=p+qq+rx = \frac{p + q}{q + r}

Explanation

Solution

ax2+bx+c=0\mathbf{a}\mathbf{x}^{\mathbf{2}}\mathbf{+ bx + c = 0} are the roots of anxn+an1xn1+....+a1x=0a_{n}x^{n} + a_{n - 1}x^{n - 1} + .... + a_{1}x = 0.

So, x=αx = \alphaand nanxn1+(n1)an1xn2+....+a1=0na_{n}x^{n - 1} + (n - 1)a_{n - 1}x^{n - 2} + .... + a_{1} = 0

Again α\alpha are the roots of α\alpha then

2\leq 2 and P(0)=0,P(0) = 0,

Now P(1)=1P(1) = 1

P(x)>0 x(0,1)P'(x) > 0\ \forall x \in (0,1)

S=0S = 0.