Question
Question: If the roots of the equation \(\frac{p + q - x}{r} + \frac{q + r - x}{p}\) are \(\frac{r + p - x}{q}...
If the roots of the equation rp+q−x+pq+r−x are qr+p−x and the roots of the equation p+q+r3x=0 are x=p+q+r, then value of p will be.
A
x=p−q+r
B
x=q+rp+q
C
x=qp+r
D
None of these
Answer
x=q+rp+q
Explanation
Solution
ax2+bx+c=0 are the roots of anxn+an−1xn−1+....+a1x=0.
So, x=αand nanxn−1+(n−1)an−1xn−2+....+a1=0
Again α are the roots of α then
≤2 and P(0)=0,
Now P(1)=1
⇒ P′(x)>0 ∀x∈(0,1)
⇒ S=0.