Solveeit Logo

Question

Question: If the roots of the equation $ax^3+bx^2-x+1=0$ are in H.P. then $\left|\frac{b_{max}}{a_{min}}\right...

If the roots of the equation ax3+bx2x+1=0ax^3+bx^2-x+1=0 are in H.P. then bmaxamin\left|\frac{b_{max}}{a_{min}}\right| equals ____.

Answer

9

Explanation

Solution

Solution:

Let the roots of

ax3+bx2x+1=0ax^3 + bx^2 - x + 1 = 0

be α\alpha, β\beta, and γ\gamma in harmonic progression (H.P.). Then, the reciprocals 1α\frac{1}{\alpha}, 1β\frac{1}{\beta}, 1γ\frac{1}{\gamma} are in arithmetic progression (A.P.), so

1β=12(1α+1γ)2αγ=β(α+γ).\frac{1}{\beta} = \frac{1}{2}\left(\frac{1}{\alpha} + \frac{1}{\gamma}\right) \quad \Longrightarrow \quad 2\alpha\gamma = \beta(\alpha+\gamma).

From Vieta’s formulas for the cubic ax3+bx2x+1=0ax^3+bx^2- x +1 = 0:

  1. α+β+γ=ba\alpha + \beta + \gamma = -\frac{b}{a},
  2. αβ+βγ+γα=1a\alpha\beta + \beta\gamma + \gamma\alpha = \frac{-1}{a},
  3. αβγ=1a\alpha\beta\gamma = -\frac{1}{a}.

Since αβγ=1a\alpha\beta\gamma = -\frac{1}{a}, we have

αγ=1aβ.\alpha\gamma = \frac{-1}{a\beta}.

Also, from the sum we write:

α+γ=α+β+γβ=baβ.\alpha + \gamma = \alpha+\beta+\gamma -\beta = -\frac{b}{a} -\beta.

Substitute into the H.P. condition:

2(1aβ)=β(baβ).2\left(\frac{-1}{a\beta}\right) = \beta\left(-\frac{b}{a}-\beta\right).

Multiply both sides by aβa\beta (noting β0\beta \neq 0):

2=aβ2(baβ)=bβ2aβ3.-2 = a\beta^2\left(-\frac{b}{a} - \beta\right) = -b\beta^2 - a\beta^3.

Rearrange:

aβ3+bβ22=0.(1)a\beta^3 + b\beta^2 - 2 = 0. \quad (1)

But β\beta is a root of the original cubic, so it satisfies:

aβ3+bβ2β+1=0.(2)a\beta^3 + b\beta^2 - \beta + 1 = 0. \quad (2)

Subtract (1) from (2):

[aβ3+bβ2β+1][aβ3+bβ22]=β+3=0,\left[a\beta^3 + b\beta^2 - \beta + 1\right] - \left[a\beta^3 + b\beta^2 - 2\right] = -\beta + 3 = 0,

which gives

β=3.\beta = 3.

Now substitute β=3\beta = 3 in equation (1):

a(27)+b(9)2=027a+9b=2b=227a9.a(27) + b(9) - 2= 0 \quad \Longrightarrow \quad 27a + 9b = 2 \quad \Longrightarrow \quad b = \frac{2-27a}{9}.

For the roots (other than β=3\beta=3) to be real and distinct, consider the quadratic whose roots are α\alpha and γ\gamma. From Vieta for these two roots, using:

α+γ=ba3,αγ=13a.\alpha + \gamma = -\frac{b}{a} - 3,\quad \alpha\gamma = \frac{-1}{3a}.

Their discriminant is:

Δ=(α+γ)24αγ=(29a)24(13a)=481a2+43a=4+108a81a2.\Delta = (\alpha+\gamma)^2 - 4\alpha\gamma = \left(-\frac{2}{9a}\right)^2 - 4\left(-\frac{1}{3a}\right) = \frac{4}{81a^2} + \frac{4}{3a} = \frac{4+108a}{81a^2}.

For Δ>0\Delta>0, we require:

4+108a>0a>127.4 + 108a > 0 \quad \Longrightarrow \quad a > -\frac{1}{27}.

The ratio bmaxamin\left|\frac{b_{\max}}{a_{\min}}\right| is achieved when bb is maximum and aa is minimum. The expression b=293ab = \frac{2}{9} - 3a shows that bb is maximum when aa is minimum (i.e. as low as possible). From the condition, the minimum possible aa is just above 127-\frac{1}{27}; taking the infimum, we set:

amin=127.a_{\min} = -\frac{1}{27}.

Then,

bmax=227(127)9=2+19=39=13.b_{\max} = \frac{2-27\left(-\frac{1}{27}\right)}{9} = \frac{2+1}{9} = \frac{3}{9} = \frac{1}{3}.

Thus,

bmaxamin=13127=13×271=9.\left|\frac{b_{\max}}{a_{\min}}\right| = \left|\frac{\frac{1}{3}}{-\frac{1}{27}}\right| = \left|\frac{1}{3} \times \frac{27}{1}\right| = 9.

Minimal Explanation:

  1. For roots in H.P., reciprocals are in A.P. ⇒ 2αγ=β(α+γ)2\alpha\gamma = \beta(\alpha+\gamma).
  2. Using Vieta’s formulas and eliminating α\alpha, γ\gamma yields β=3\beta=3 and 27a+9b2=027a+9b-2=0.
  3. Express bb as b=293ab=\frac{2}{9}-3a. For real distinct α\alpha and γ\gamma, a>127a > -\frac{1}{27}.
  4. Minimum aa is 127-\frac{1}{27} giving maximum b=13b=\frac{1}{3}.
  5. Hence, bmaxamin=9\left|\frac{b_{\max}}{a_{\min}}\right| = 9.