Solveeit Logo

Question

Question: If the roots of the equation \(a{{x}^{2}}+bx+c=0\) are in the form \(\dfrac{\left( k+1 \right)}{k}\)...

If the roots of the equation ax2+bx+c=0a{{x}^{2}}+bx+c=0 are in the form (k+1)k\dfrac{\left( k+1 \right)}{k} and k+2k+1\dfrac{k+2}{k+1} , then (a+b+c)2{{\left( a+b+c \right)}^{2}} is equal to
(a) 2b2ac2{{b}^{2}}-ac
(b) a2{{a}^{2}}
(c) b24ac{{b}^{2}}-4ac
(d) b22ac{{b}^{2}}-2ac

Explanation

Solution

In order to solve this problem, we need to find out the property of the quadratic equation. The property states as, in ax2+bx+c=0a{{x}^{2}}+bx+c=0 , the sum of the roots is given by ba\dfrac{-b}{a} . Also, in ax2+bx+c=0a{{x}^{2}}+bx+c=0 , the product of the roots is given by ca\dfrac{c}{a} . Now we can eliminate k and get the equation for (a+b+c)2{{\left( a+b+c \right)}^{2}} . For simplification we must know the following identities, (a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab and (a+b+c)2=a2+b2+c2+2ab+2bc+2ac{{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ac .

Complete step-by-step solution:
We have a quadratic equation ax2+bx+c=0a{{x}^{2}}+bx+c=0 and we also know the root of this equation.
The roots of this quadratic equation are (k+1)k\dfrac{\left( k+1 \right)}{k} and k+2k+1\dfrac{k+2}{k+1}.
There is a relation between the roots of the quadratic equation and the coefficients of the same equation.
It is given as follows,
In ax2+bx+c=0a{{x}^{2}}+bx+c=0 , the sum of the roots is given by ba\dfrac{-b}{a} .
Also, in ax2+bx+c=0a{{x}^{2}}+bx+c=0 , the product of the roots is given by ca\dfrac{c}{a} .
According to the first condition we get,
k+1k+k+2k+1=ba...............(i)\dfrac{k+1}{k}+\dfrac{k+2}{k+1}=\dfrac{-b}{a}...............(i)
And according to the second equation we get,
(k+1k)(k+2k+1)=ca...................(ii)\left( \dfrac{k+1}{k} \right)\left( \dfrac{k+2}{k+1} \right)=\dfrac{c}{a}...................(ii)
Now our aim is to eliminate k by using (i) and (ii).
Let's start by solving (ii), we get,
(k+1k)(k+2k+1)=ca k+2k=ca 1+2k=ca 2k=ca1 2k=caa k2=aca k=2aca \begin{aligned} & \left( \dfrac{k+1}{k} \right)\left( \dfrac{k+2}{k+1} \right)=\dfrac{c}{a} \\\ & \dfrac{k+2}{k}=\dfrac{c}{a} \\\ & 1+\dfrac{2}{k}=\dfrac{c}{a} \\\ & \dfrac{2}{k}=\dfrac{c}{a}-1 \\\ & \dfrac{2}{k}=\dfrac{c-a}{a} \\\ & \dfrac{k}{2}=\dfrac{a}{c-a} \\\ & k=\dfrac{2a}{c-a} \\\ \end{aligned}
Now we have to substitute the value of k in equation (ii)
k+1k+k+2k+1=ba 2aca+12aca+2aca+22aca+1=ba 2a+caca2aca+2a+2c2aca2a+caca=ba a+c2a+2ca+c=ba \begin{aligned} & \dfrac{k+1}{k}+\dfrac{k+2}{k+1}=\dfrac{-b}{a} \\\ & \dfrac{\dfrac{2a}{c-a}+1}{\dfrac{2a}{c-a}}+\dfrac{\dfrac{2a}{c-a}+2}{\dfrac{2a}{c-a}+1}=\dfrac{-b}{a} \\\ & \dfrac{\dfrac{2a+c-a}{c-a}}{\dfrac{2a}{c-a}}+\dfrac{\dfrac{2a+2c-2a}{c-a}}{\dfrac{2a+c-a}{c-a}}=\dfrac{-b}{a} \\\ & \dfrac{a+c}{2a}+\dfrac{2c}{a+c}=\dfrac{-b}{a} \\\ \end{aligned}
We need to solve this further by cross multiplying,
a+c2a+2ca+c=ba (a+c)2+4ac2a(a+c)=ba (a+c)2+4ac=b(2a+2c) \begin{aligned} & \dfrac{a+c}{2a}+\dfrac{2c}{a+c}=\dfrac{-b}{a} \\\ & \dfrac{{{\left( a+c \right)}^{2}}+4ac}{2a\left( a+c \right)}=\dfrac{-b}{a} \\\ & {{\left( a+c \right)}^{2}}+4ac=-b\left( 2a+2c \right) \\\ \end{aligned}
We must know the property, (a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab .
Therefore, substituting we get,
(a+c)2+4ac=b(2a+2c) a2+c2+2ac+4ac=2ba2bc a2+c2+2ab+2bc+6ac=0 \begin{aligned} & {{\left( a+c \right)}^{2}}+4ac=-b\left( 2a+2c \right) \\\ & {{a}^{2}}+{{c}^{2}}+2ac+4ac=-2ba-2bc \\\ & {{a}^{2}}+{{c}^{2}}+2ab+2bc+6ac=0 \\\ \end{aligned}
The formula for (a+b+c)2{{\left( a+b+c \right)}^{2}} is given by (a+b+c)2=a2+b2+c2+2ab+2bc+2ac{{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ac .
Therefore, adding b2{{b}^{2}} we get,
a2+c2+2ab+2bc+6ac=0 a2+c2+b2+2ab+2bc+6ac=b2 a2+b2+c2+2ab+2bc+2ac+4ac=b2 a2+b2+c2+2ab+2bc+2ac+4ac=b2 (a+b+c)2=b24ac \begin{aligned} & {{a}^{2}}+{{c}^{2}}+2ab+2bc+6ac=0 \\\ & {{a}^{2}}+{{c}^{2}}+{{b}^{2}}+2ab+2bc+6ac={{b}^{2}} \\\ & {{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ac+4ac={{b}^{2}} \\\ & {{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ac+4ac={{b}^{2}} \\\ & {{\left( a+b+c \right)}^{2}}={{b}^{2}}-4ac \\\ \end{aligned}

Hence, the correct option is (c).

Note: In this problem, the calculation can get very tricky. While eliminating k we can also use equation (i) to find the equation of k and then substitute in equation (ii). We will get the same answer. Also, we must be aware of the formula for (a+b+c)2{{\left( a+b+c \right)}^{2}} and add b2{{b}^{2}} on both sides.