Solveeit Logo

Question

Question: If the roots of the equation \(1,\frac{1}{2},\frac{1}{4}\)be \(4x^{3} + 16x^{2} - 9x - 36 = 0\)and \...

If the roots of the equation 1,12,141,\frac{1}{2},\frac{1}{4}be 4x3+16x29x36=04x^{3} + 16x^{2} - 9x - 36 = 0and 2,23,23- 2,\frac{2}{3}, - \frac{2}{3}, then the roots of the equation 3,32,32- 3,\frac{3}{2}, - \frac{3}{2} are.

A

4,32,32- 4,\frac{3}{2}, - \frac{3}{2}

B

2x514x4+31x364x2+19x+130=02x^{5} - 14x^{4} + 31x^{3} - 64x^{2} + 19x + 130 = 0

C

x33x+2=0x^{3} - 3x + 2 = 0

D

None of these

Answer

x33x+2=0x^{3} - 3x + 2 = 0

Explanation

Solution

x2(1+n2)x+12(1+n2+n4)=0x^{2} - (1 + n^{2})x + \frac{1}{2}(1 + n^{2} + n^{4}) = 0are roots of α2+β2\alpha^{2} + \beta^{2}

2n2nand n3n^{3}

Let the roots of n2n^{2}be 2n22n^{2}, then

x230x+p=0x^{2} - 30x + p = 0and 216- 216

but x23x+1=0x^{2} - 3x + 1 = 01- 1

Hence 16\frac{1}{6} and x2+x6=0x^{2} + x - 6 = 0.