Solveeit Logo

Question

Question: If the roots of the equation \(- 3 < a < 3\) are real, then....

If the roots of the equation 3<a<3- 3 < a < 3 are real, then.

A

a<2a < - 2

B

x22ax+a2+a3=0x^{2} - 2ax + a^{2} + a - 3 = 0

C

a<2a < 2

D

2a32 \leq a \leq 3

Answer

a<2a < 2

Explanation

Solution

Roots of ax2+bx+c=0ax^{2} + bx + c = 0 are real. Soαaβ+b+βaα+b=\frac{\alpha}{a\beta + b} + \frac{\beta}{a\alpha + b} =

2a\frac{2}{a}2b\frac{2}{b}

2c\frac{2}{c}2a- \frac{2}{a}

Now we have two cases:

Case I : ax2+bx+c=0ax^{2} + bx + c = 0and a(a+b)=2bca(a + b) = 2bc

c(a+c)=2abc(a + c) = 2aband b(a+b)=2acb(a + b) = 2ac

Case II : b(a+b)=acb(a + b) = acand αxα+βxβ=1\frac{\alpha}{x - \alpha} + \frac{\beta}{x - \beta} = 1

α+β\alpha + \betaand α,β\alpha,\betabut it is impossible

Therefore, we get x22x+3=0x^{2} - 2x + 3 = 0

Aliter : Students should note that the expression 1α2\frac{1}{\alpha^{2}} will be less than or equal to zero if 1β2\frac{1}{\beta^{2}} or otherwise x2+2x+1=0x^{2} + 2x + 1 = 0.

Therefore9x2+2x+1=09x^{2} + 2x + 1 = 0

i.e., 9x22x+1=09x^{2} - 2x + 1 = 0.