Question
Question: If the roots of the equation \(- 3 < a < 3\) are real, then....
If the roots of the equation −3<a<3 are real, then.
A
a<−2
B
x2−2ax+a2+a−3=0
C
a<2
D
2≤a≤3
Answer
a<2
Explanation
Solution
Roots of ax2+bx+c=0 are real. Soaβ+bα+aα+bβ=
⇒ a2⇒ b2
⇒ c2⇒ −a2
Now we have two cases:
Case I : ax2+bx+c=0and a(a+b)=2bc
⇒ c(a+c)=2aband b(a+b)=2ac
Case II : b(a+b)=acand x−αα+x−ββ=1
⇒ α+βand α,βbut it is impossible
Therefore, we get x2−2x+3=0
Aliter : Students should note that the expression α21 will be less than or equal to zero if β21 or otherwise x2+2x+1=0.
Therefore9x2+2x+1=0
i.e., 9x2−2x+1=0.