Question
Question: If the roots of the cubic equation \(a x ^ { 3 } + b x ^ { 2 } + c x + d = 0\) are in G.P., then....
If the roots of the cubic equation ax3+bx2+cx+d=0 are in G.P., then.
A
c3a=b3d
B
ca3=bd3
C
a3b=c3d
D
ab3=cd3
Answer
c3a=b3d
Explanation
Solution
Let RA,A,AR be the roots of the equation
ax3+bx2+cx+d=0
then A3= Product of the roots =−ad ⇒ A=−(ad)1/3
Since is a root of the equation.
∴aA3+bA2+cA+d=0
⇒ a(−ad)+b(−ad)2/3+c(−ad)1/3+d=0
⇒ b(ad)2/3=c(ad)1/3 ⇒ b3a2d2=c3ad⇒ b3d=c3a.