Solveeit Logo

Question

Question: If the roots of the cubic \(64{{x}^{3}}-144{{x}^{2}}+92x-15=0\) are in Arithmetic Progression, then ...

If the roots of the cubic 64x3144x2+92x15=064{{x}^{3}}-144{{x}^{2}}+92x-15=0 are in Arithmetic Progression, then the difference between the largest and smallest root is

Explanation

Solution

We solve this problem by first assuming the roots of the equation that are in arithmetic progression as ad,a,a+da-d,a,a+d. Then we use the formula for the sum and product of the roots of the equation ax3+bx2+cx+d=0a{{x}^{3}}+b{{x}^{2}}+cx+d=0, α+β+γ=ba\alpha +\beta +\gamma =-\dfrac{b}{a}, αβ+βγ+γα=ca\alpha \beta +\beta \gamma +\gamma \alpha =\dfrac{c}{a} and αβγ=da\alpha \beta \gamma =-\dfrac{d}{a}. Then we use these formulas, and substitute the assumed roots and solve them to find the value of aa and dd. Then using those values, we find the roots and then the difference between the largest and the smallest roots.

Complete step-by-step solution
The equation we are given is 64x3144x2+92x15=064{{x}^{3}}-144{{x}^{2}}+92x-15=0.
We are also given that the roots of this cubic equation are in Arithmetic Progression. So, let us assume that the roots are ad,a,a+da-d,a,a+d.
Now let us consider the formula for the sum and product of the roots of the equation, ax3+bx2+cx+d=0a{{x}^{3}}+b{{x}^{2}}+cx+d=0.
α+β+γ=ba αβ+βγ+γα=ca αβγ=da \begin{aligned} &\Rightarrow \alpha +\beta +\gamma =-\dfrac{b}{a} \\\ &\Rightarrow \alpha \beta +\beta \gamma +\gamma \alpha =\dfrac{c}{a} \\\ &\Rightarrow \alpha \beta \gamma =-\dfrac{d}{a} \\\ \end{aligned}
So, using this formula, we can write the sum of the roots ad,a,a+da-d, a, a+d as,
ad+a+a+d=(14464) 3a=14464 3a=94 a=34................(1) \begin{aligned} & \Rightarrow a-d+a+a+d=-\left( -\dfrac{144}{64} \right) \\\ & \Rightarrow 3a=\dfrac{144}{64} \\\ & \Rightarrow 3a=\dfrac{9}{4} \\\ & \Rightarrow a=\dfrac{3}{4}................\left( 1 \right) \\\ \end{aligned}
Now let us use the formula for the product of the roots ad,a,a+da-d,a,a+d. Then we get,

& \Rightarrow \left( a-d \right)\times a\times \left( a+d \right)=-\left( -\dfrac{15}{64} \right) \\\ & \Rightarrow a\left( a-d \right)\left( a+d \right)=\dfrac{15}{64} \\\ \end{aligned}$$ Now let us consider the formula, $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$ Using this formula, we can write the above equation as, $$\Rightarrow a\left( {{a}^{2}}-{{d}^{2}} \right)=\dfrac{15}{64}$$ Now let us substitute the value of $a$ from equation (1) in the above equation. Then we get, $$\begin{aligned} & \Rightarrow \left( \dfrac{3}{4} \right)\left( {{\left( \dfrac{3}{4} \right)}^{2}}-{{d}^{2}} \right)=\dfrac{15}{64} \\\ & \Rightarrow \dfrac{9}{16}-{{d}^{2}}=\dfrac{\dfrac{15}{64}}{\dfrac{3}{4}} \\\ & \Rightarrow \dfrac{9}{16}-{{d}^{2}}=\dfrac{5}{16} \\\ \end{aligned}$$ $$\begin{aligned} & \Rightarrow {{d}^{2}}=\dfrac{9}{16}-\dfrac{5}{16} \\\ & \Rightarrow {{d}^{2}}=\dfrac{4}{16} \\\ & \Rightarrow {{d}^{2}}=\dfrac{1}{4} \\\ & \Rightarrow d=\pm \dfrac{1}{2} \\\ \end{aligned}$$ Now we need to find the difference between the largest and smallest root in the progression. When $a=\dfrac{3}{4}\ and\ d=\dfrac{1}{2}$, the roots are $$\begin{aligned} & \Rightarrow a-d=\dfrac{3}{4}-\dfrac{1}{2}=\dfrac{1}{4} \\\ & \Rightarrow a=\dfrac{3}{4} \\\ & \Rightarrow a+d=\dfrac{3}{4}+\dfrac{1}{2}=\dfrac{5}{4} \\\ \end{aligned}$$ So, difference between the largest and smallest terms is, $\Rightarrow \dfrac{5}{4}-\dfrac{1}{4}=\dfrac{4}{4}=1$ When $a=\dfrac{3}{4}\ and\ d=-\dfrac{1}{2}$, the roots are $$\begin{aligned} & \Rightarrow a-d=\dfrac{3}{4}-\left( -\dfrac{1}{2} \right)=\dfrac{3}{4}+\dfrac{1}{2}=\dfrac{5}{4} \\\ & \Rightarrow a=\dfrac{3}{4} \\\ & \Rightarrow a+d=\dfrac{3}{4}+\left( -\dfrac{1}{2} \right)=\dfrac{3}{4}-\dfrac{1}{2}=\dfrac{1}{4} \\\ \end{aligned}$$ So, difference between the largest and smallest roots is, $\Rightarrow \dfrac{5}{4}-\dfrac{1}{4}=\dfrac{4}{4}=1$ **So, in both the cases the difference is equal to 1. Hence the answer is 1.** **Note:** The common mistake one does while solving this problem is one might take the difference of largest and smallest root as, $\begin{aligned} & \Rightarrow \left( a+d \right)-\left( a-d \right) \\\ & \Rightarrow 2d \\\ \end{aligned}$ So, it is equal to 1 if $$d=\dfrac{1}{2}$$ and -1 when $d=-\dfrac{1}{2}$. But it is wrong because when $d=-\dfrac{1}{2}$, the largest root is $a-d$ and the smallest root is $a+d$. So, we will get the answer as 1 again.