Question
Question: If the roots of equation x<sup>3</sup> + ax<sup>2</sup> + b = 0 are α<sub>1</sub>, α<sub>2</sub> and...
If the roots of equation x3 + ax2 + b = 0 are α1, α2 and α3;
(a, b ≠ 0) then the equation whose roots are α1α2α3α1α2+α2α3,α1α2α3α2α3+α3α1,α1α2α3α1α3+α1α2 are
A
ax3 + bx – 1 = 0
B
bx3 + ax – 1 = 0
C
ax3 – bx – 1 = 0
D
bx3 + ax + 1 = 0
Answer
bx3 + ax – 1 = 0
Explanation
Solution
α1α2α3α1α2+α2α3= –α1α2α3α1α3 = –α21.
**∴ **required equation has root –α11,–α21,–α31
⇒ y = –x1 or x = –y1.
∴ required equation(–y1)3+ a(–y1)2+ b = 0
Or by3 + ay – 1 = 0
⇒ bx3 + ax – 1 = 0