Solveeit Logo

Question

Question: If the roots of equation x<sup>3</sup> + ax<sup>2</sup> + b = 0 are α<sub>1</sub>, α<sub>2</sub> and...

If the roots of equation x3 + ax2 + b = 0 are α1, α2 and α3;

(a, b ≠ 0) then the equation whose roots are α1α2+α2α3α1α2α3\frac{\alpha_{1}\alpha_{2} + \alpha_{2}\alpha_{3}}{\alpha_{1}\alpha_{2}\alpha_{3}},α2α3+α3α1α1α2α3\frac{\alpha_{2}\alpha_{3} + \alpha_{3}\alpha_{1}}{\alpha_{1}\alpha_{2}\alpha_{3}},α1α3+α1α2α1α2α3\frac{\alpha_{1}\alpha_{3} + \alpha_{1}\alpha_{2}}{\alpha_{1}\alpha_{2}\alpha_{3}} are

A

ax3 + bx – 1 = 0

B

bx3 + ax – 1 = 0

C

ax3 – bx – 1 = 0

D

bx3 + ax + 1 = 0

Answer

bx3 + ax – 1 = 0

Explanation

Solution

α1α2+α2α3α1α2α3\frac{\alpha_{1}\alpha_{2} + \alpha_{2}\alpha_{3}}{\alpha_{1}\alpha_{2}\alpha_{3}}= α1α3α1α2α3–\frac{\alpha_{1}\alpha_{3}}{\alpha_{1}\alpha_{2}\alpha_{3}} = 1α2–\frac{1}{\alpha_{2}}.

**∴ **required equation has root 1α1,1α2,1α3–\frac{1}{\alpha_{1}},–\frac{1}{\alpha_{2}},–\frac{1}{\alpha_{3}}

⇒ y = 1x–\frac{1}{x} or x = 1y–\frac{1}{y}.

∴ required equation(1y)3\left( –\frac{1}{y} \right)^{3}+ a(1y)2\left( –\frac{1}{y} \right)^{2}+ b = 0

Or by3 + ay – 1 = 0

⇒ bx3 + ax – 1 = 0