Solveeit Logo

Question

Question: If the resultant of \[3\overrightarrow{p}\] and \[4\overrightarrow{p}\] is a force \[5\overrightarro...

If the resultant of 3p3\overrightarrow{p} and 4p4\overrightarrow{p} is a force 5p5\overrightarrow{p}, then the angle between 3p3\overrightarrow{p} and 5p5\overrightarrow{p} is
a. sin1(35){{\sin }^{-1}}\left( \dfrac{3}{5} \right)
b. sin1(45){{\sin }^{-1}}\left( \dfrac{4}{5} \right)
c. 90{{90}^{\circ }}
d. None of these

Explanation

Solution

First we will put the values in the resultant formula. Now using this we will find the angle made between the resultant and the forces 3p3\overrightarrow{p} and 5p5\overrightarrow{p}. Take angle between 4p4\overrightarrow{p} and 5p5\overrightarrow{p} as β\beta , α\alpha between 5p5\overrightarrow{p} and 3p3\overrightarrow{p}. So, we have the total angle ϕ=α+β\phi =\alpha +\beta .

Complete step by step answer:
Now consider the figure drawn below,

Now the force 4p4\overrightarrow{p} and force 3p3\overrightarrow{p} is drawn and the resultant of these two forces is 5p5\overrightarrow{p} force.
Let the angle made between the 4p4\overrightarrow{p} force and resultant 5p5\overrightarrow{p} is β\beta and the angle made between the 3p3\overrightarrow{p} force and resultant 5p5\overrightarrow{p} is α\alpha .
We know the basic formula where the resultant between 2 vectors A\overrightarrow{A} and B\overrightarrow{B} is given by the equation,
R2=A2+B2+2ABcosϕ{{R}^{2}}={{A}^{2}}+{{B}^{2}}+2AB\cos \phi
Let us substitute the value into the equation, Hence we havr resultant =R=5p=R=5\overrightarrow{p} A=4pA=4\overrightarrow{p} and B=3pB=3\overrightarrow{p}
Put ,ϕ=α+β\phi =\alpha +\beta in the above expression.

& \Rightarrow {{\left( 5\overrightarrow{p} \right)}^{2}}={{\left( 4\overrightarrow{p} \right)}^{2}}+{{\left( 3\overrightarrow{p} \right)}^{2}}+2\left( 4\overrightarrow{p} \right)\left( 3\overrightarrow{p} \right)\cos \left( \alpha +\beta \right) \\\ & \Rightarrow 25{{\overrightarrow{p}}^{2}}=16{{\overrightarrow{p}}^{2}}+9{{\overrightarrow{p}}^{2}}+24{{\overrightarrow{p}}^{2}}\cos \left( \alpha +\beta \right) \\\ & 25{{\overrightarrow{p}}^{2}}=25{{\overrightarrow{p}}^{2}}+24{{\overrightarrow{p}}^{2}}\cos \left( \alpha +\beta \right) \\\ \end{aligned}$$ Cancel out $$25{{\overrightarrow{p}}^{2}}$$ from LHS and RHS. $$\begin{aligned} & \Rightarrow 24{{\overrightarrow{p}}^{2}}\cos \left( \alpha +\beta \right)=0 \\\ & \cos \left( \alpha +\beta \right)=0 \\\ & \Rightarrow \alpha +\beta ={{\cos }^{-1}}0\left[ \because {{\cos }^{-1}}0={{90}^{\circ }} \right] \\\ & \alpha +\beta ={{90}^{\circ }} \\\ \end{aligned}$$ Now, from the figure we can use the sine function to bring out the relation between the resultant and the vectors using the below mentioned formula. Now we can say that $\vec{R}\sin \alpha =\vec{B}\sin \left( \alpha +\beta \right)$ which is nothing but y projection of $\vec{B}$ and $\vec{R}$. Hence we have $$\overrightarrow{B}=\dfrac{\overrightarrow{R}\sin \alpha }{\sin \left( \alpha +\beta \right)}$$ Now substituting the values of $$\overrightarrow{A}=4\overrightarrow{p},\overrightarrow{B}=3\overrightarrow{p},\alpha +\beta ={{90}^{\circ }},\overrightarrow{R}=5\overrightarrow{p}$$ we get, $$\begin{aligned} & \Rightarrow 4\overrightarrow{p}=\dfrac{5\overrightarrow{p}\sin \alpha }{\sin 90}\left[ \because \sin 90=1 \right] \\\ & \Rightarrow 4\overrightarrow{p}=\dfrac{5\overrightarrow{p}\sin \alpha }{1} \\\ & \sin \alpha =\dfrac{4\overrightarrow{p}}{5\overrightarrow{p}} \\\ & \Rightarrow \sin \alpha =\dfrac{4}{5} \\\ & \therefore \alpha ={{\sin }^{-1}}\left( \dfrac{4}{5} \right) \\\ \end{aligned}$$ **So, the correct answer is “Option b”.** **Note:** The angle between the resultants is taken as $$\alpha $$ and $$\beta $$, which makes the total angle $$\phi =\alpha +\beta $$. We can solve this in easy way by directly applying the formula, $$\overrightarrow{B}=\dfrac{\overrightarrow{R}\sin \alpha }{\sin \left( \alpha +\beta \right)}$$.