Solveeit Logo

Question

Question: If the resolved parts of the force vector \[5\overset{\wedge }{\mathop{i}}\,+4\overset{\wedge }{\mat...

If the resolved parts of the force vector 5i+4j+2k5\overset{\wedge }{\mathop{i}}\,+4\overset{\wedge }{\mathop{j}}\,+2\overset{\wedge }{\mathop{k}}\, along and perpendicular to the vector 3i+4j5k3\overset{\wedge }{\mathop{i}}\,+4\overset{\wedge }{\mathop{j}}\,-5\overset{\wedge }{\mathop{k}}\, are α\alpha and β\beta respectively. Then, the value of α\alpha is
(A). 2150(3i+4j5k)\dfrac{21}{50}\left( 3\overset{\wedge }{\mathop{i}}\,+4\overset{\wedge }{\mathop{j}}\,-5\overset{\wedge }{\mathop{k}}\, \right)
(B). 2150(3i4j+5k)\dfrac{21}{50}\left( 3\overset{\wedge }{\mathop{i}}\,-4\overset{\wedge }{\mathop{j}}\,+5\overset{\wedge }{\mathop{k}}\, \right)
(C). 1150(2i4j+3k)\dfrac{11}{50}\left( 2\overset{\wedge }{\mathop{i}}\,-4\overset{\wedge }{\mathop{j}}\,+3\overset{\wedge }{\mathop{k}}\, \right)
(D). 150(187i+116j+205k)\dfrac{1}{50}\left( 187\overset{\wedge }{\mathop{i}}\,+116\overset{\wedge }{\mathop{j}}\,+205\overset{\wedge }{\mathop{k}}\, \right)

Explanation

Solution

Hint: First break the force vector into 2 parts. Assume the force vector as F. Then assume the parallel and assume perpendicular components with 2 variables. Find the value of the parallel component in terms of F. Now apply, the projection formula on the parallel component of F and another vector. Assume another vector to be B. So the formula for projection will be applied and the result you get in this formula will be the result required. If these are 2 vectors a, b then projection of a along b will be a.bb\dfrac{\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,}{\left| \overset{\to }{\mathop{b}}\, \right|}.

Complete step-by-step solution -
Let us assume the force vector to be F, we can write it as:
F = 5i+4j+2k5\overset{\wedge }{\mathop{i}}\,+4\overset{\wedge }{\mathop{j}}\,+2\overset{\wedge }{\mathop{k}}\,, F=52+42+22=45\left| \overset{\to }{\mathop{F}}\, \right|=\sqrt{{{5}^{2}}+{{4}^{2}}+{{2}^{2}}}=\sqrt{45}
Now, take the other vector to be b, we can write it as:
b = 3i+4j5k3\overset{\wedge }{\mathop{i}}\,+4\overset{\wedge }{\mathop{j}}\,-5\overset{\wedge }{\mathop{k}}\, b=32+42+52=50\Rightarrow \left| \overset{\to }{\mathop{b}}\, \right|=\sqrt{{{3}^{2}}+{{4}^{2}}+{{5}^{2}}}=\sqrt{50}
Now resolve the vector F into 2 parts, written as follows:
F = (parallel component) + (perpendicular component)
Let the parallel component be a. Now we need to find a.
By basic knowledge of vectors, we can say a parallel component of vector A is AcosθA\cos \theta .
By above condition, we can say, a=Fcosθa=F\cos \theta .
So, we need the value of α\alpha , which is asked in the question.
Given the condition of α\alpha in the question is written as follows:
α\alpha is the projection of the parallel component on a given vector.
Here, we have α\alpha in terms of a, b can be written as:
α\alpha = projection of a along b.
By basic knowledge of vector, projection formula is written as:
Projection of a along b = a.bb\dfrac{\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,}{\left| \overset{\to }{\mathop{b}}\, \right|}.
cosθ=a.bb\cos \theta =\dfrac{\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,}{\left| \overset{\to }{\mathop{b}}\, \right|} if θ\theta is between a.b\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,.
By substituting the value of a,b\overset{\to }{\mathop{a}}\,,\overset{\to }{\mathop{b}}\, in formula we get,
α=(Fcosθ).bb\alpha =\dfrac{\left( F\cos \theta \right).\overset{\to }{\mathop{b}}\,}{\left| \overset{\to }{\mathop{b}}\, \right|}
By substituting the value of cosθ\cos \theta , we get the equation as:
α=(F.b)Fb.bb.F\alpha =\dfrac{\left( \overset{\to }{\mathop{F}}\,.\overset{\to }{\mathop{b}}\, \right)}{\left| \overset{\to }{\mathop{F}}\, \right|\left| \overset{\to }{\mathop{b}}\, \right|}.\dfrac{\overset{\to }{\mathop{b}}\,}{\left| \overset{\to }{\mathop{b}}\, \right|}.\left| \overset{\to }{\mathop{F}}\, \right|
By canceling common terms, we get eh equation as:
α=(F.b)b2=[(5i+4j+2k).(3i+4j5k)](50)2(3i+4j5k)\alpha =\dfrac{\left( \overset{\to }{\mathop{F}}\,.\overset{\to }{\mathop{b}}\, \right)}{{{\left| \overset{\to }{\mathop{b}}\, \right|}^{2}}}=\dfrac{\left[ \left( 5\overset{\wedge }{\mathop{i}}\,+4\overset{\wedge }{\mathop{j}}\,+2\overset{\wedge }{\mathop{k}}\, \right).\left( 3\overset{\wedge }{\mathop{i}}\,+4\overset{\wedge }{\mathop{j}}\,-5\overset{\wedge }{\mathop{k}}\, \right) \right]}{{{\left( \sqrt{50} \right)}^{2}}}\left( 3\overset{\wedge }{\mathop{i}}\,+4\overset{\wedge }{\mathop{j}}\,-5\overset{\wedge }{\mathop{k}}\, \right)
By simplifying the above equation we get the value of α\alpha as:
α=2150(3i+4j5k)\alpha =\dfrac{21}{50}\left( 3\overset{\wedge }{\mathop{i}}\,+4\overset{\wedge }{\mathop{j}}\,-5\overset{\wedge }{\mathop{k}}\, \right)
Therefore option (a) is correct for the given question.

Note: While applying projection formula be careful, which is a, which is b if you take reverse then you get a\left| a \right| in the denominator which is wrong. While substituting cosθ\cos \theta formula see carefully that F\left| \overset{\to }{\mathop{F}}\, \right| will be cancelled. If you do wrong in that then answer will change look carefully at the denominator Students generally substitute a\left| \overset{\to }{\mathop{a}}\, \right| in place of b\left| \overset{\to }{\mathop{b}}\, \right| and get the wrong result. So substitute the determinant property.