Solveeit Logo

Question

Question: If the resolved part of the force vector \[5\widehat i + 4\widehat j + 2\widehat k\] along and perpe...

If the resolved part of the force vector 5i^+4j^+2k^5\widehat i + 4\widehat j + 2\widehat k along and perpendicular to the vector3i^+4j^+5k^3\widehat i + 4\widehat j + - 5\widehat k are α\alpha and β\beta respectively. Then the value of α\alpha is
a.2150(3i^+4j^5k^)\dfrac{{21}}{{50}}\left( {3\widehat i + 4\widehat j - 5\widehat k} \right)
b.2150(3i^4j^+5k^)\dfrac{{21}}{{50}}\left( {3\widehat i - 4\widehat j + 5\widehat k} \right)
c.1150(2i^4j^+3k^)\dfrac{{11}}{{50}}\left( {2\widehat i - 4\widehat j + 3\widehat k} \right)
d.150(187i^+116j^+205k^)\dfrac{1}{{50}}\left( {187\widehat i + 116\widehat j + 205\widehat k} \right)

Explanation

Solution

Here we need to find the value of α\alpha , which is equal to the resolved part of vector 5i^+4j^+2k^5\widehat i + 4\widehat j + 2\widehat k along the vector 3i^+4j^+5k^3\widehat i + 4\widehat j + - 5\widehat k. We will resolve the vector 5i^+4j^+2k^5\widehat i + 4\widehat j + 2\widehat k along another vector3i^+4j^+5k^3\widehat i + 4\widehat j + - 5\widehat k. We will use the formula to resolve the vector5i^+4j^+2k^5\widehat i + 4\widehat j + 2\widehat k along another vector3i^+4j^+5k^3\widehat i + 4\widehat j + - 5\widehat k. This will give us the value of α\alpha .

Formula used:
We will use the formula to resolve the part of any vector aa along another vector bb is (a.b)bb2\dfrac{{\left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow b }}{{{{\left| b \right|}^2}}}.

Complete step-by-step answer:
It is given that the resolved part of the vector 5i^+4j^+2k^5\widehat i + 4\widehat j + 2\widehat k along the vector 3i^+4j^+5k^3\widehat i + 4\widehat j + - 5\widehat k is equal to α\alpha and resolved part of the vector 5i^+4j^+2k^5\widehat i + 4\widehat j + 2\widehat kperpendicular to the vector3i^+4j^+5k^3\widehat i + 4\widehat j + - 5\widehat k is equal toβ\beta .
Let us assume a=5i^+4j^+2k^\overrightarrow a = 5\widehat i + 4\widehat j + 2\widehat k and b=3i^+4j^+5k^\overrightarrow b = 3\widehat i + 4\widehat j + - 5\widehat k.
We will put the value of the vectora\overrightarrow a and b\overrightarrow b in the formula \Rightarrow (a.b)bb2\dfrac{{\left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow b }}{{{{\left| b \right|}^2}}}.
\Rightarrow α=[(5i^+4j^+2k^).(3i^+4j^+5k^)](3i^+4j^+5k^)(3i^+4j^+5k^)2\alpha = \dfrac{{\left[ {\left( {5\widehat i + 4\widehat j + 2\widehat k} \right).\left( {3\widehat i + 4\widehat j + - 5\widehat k} \right)} \right]\left( {3\widehat i + 4\widehat j + - 5\widehat k} \right)}}{{{{\left| {\left( {3\widehat i + 4\widehat j + - 5\widehat k} \right)} \right|}^2}}}
We find the dot product of the two vectors in the numerator.
\Rightarrow α=(5.3+4.42.5)(3i^+4j^+5k^)(3i^+4j^+5k^)2\alpha = \dfrac{{\left( {5.3 + 4.4 - 2.5} \right)\left( {3\widehat i + 4\widehat j + - 5\widehat k} \right)}}{{{{\left| {\left( {3\widehat i + 4\widehat j + - 5\widehat k} \right)} \right|}^2}}}
Multiplying and adding the terms inside the bracket, we get
\Rightarrow α=21(3i^+4j^+5k^)(3i^+4j^+5k^)2\alpha = \dfrac{{21\left( {3\widehat i + 4\widehat j + - 5\widehat k} \right)}}{{{{\left| {\left( {3\widehat i + 4\widehat j + - 5\widehat k} \right)} \right|}^2}}}
Now, we will find the magnitude of the vector in the denominator.
\Rightarrow α=21(3i^+4j^+5k^)(32+42+(5)2)2\alpha = \dfrac{{21\left( {3\widehat i + 4\widehat j + - 5\widehat k} \right)}}{{{{\left| {\sqrt {\left( {{3^2} + {4^2} + {{\left( { - 5} \right)}^2}} \right)} } \right|}^2}}}
Simplifying the expression, we get
\Rightarrow α=21(3i^+4j^+5k^)50\alpha = \dfrac{{21\left( {3\widehat i + 4\widehat j + - 5\widehat k} \right)}}{{50}}
Rewriting the value of α\alpha , we get
\Rightarrow α=2150(3i^+4j^+5k^)\alpha = \dfrac{{21}}{{50}}\left( {3\widehat i + 4\widehat j + - 5\widehat k} \right)
Thus, the correct option is option (a).

Note: We have calculated the resolved part of a vector along another vector. Vector resolution is defined as a process of breaking one vector into two smaller vectors where both the vectors will be perpendicular to each other. In other words, we can say that the vector resolution is a process of finding two components of a given vector.