Solveeit Logo

Question

Physics Question on Reflection Of Light By Spherical Mirrors

If the refractive index of the material of a prism is cot(A2)cot\bigg(\frac{A}{2}\bigg), where A is the angle of the prism, then the angle of minimum deviation will be:

A

π3Aπ-3A

B

π2Aπ-2A

C

AA

D

A2\frac{A}{2}

Answer

π2Aπ-2A

Explanation

Solution

To find the angle of minimum deviation δmin\delta_{\text{min}}:

Step 1. Given Relation:
cotA2=sinA+δmin2sinA2\cot \frac{A}{2} = \frac{\sin \frac{A + \delta_{\text{min}}}{2}}{\sin \frac{A}{2}}

Step 2. Rearrange and Simplify: Take the cosine of both sides:
cosA2=sinA+δmin2\cos \frac{A}{2} = \sin \frac{A + \delta_{\text{min}}}{2}

Step 3. Solve for δmin\delta_{\text{min}}: Equate the arguments, giving:
A+δmin2=π2A2\frac{A + \delta_{\text{min}}}{2} = \frac{\pi}{2} - \frac{A}{2}

- Solving, we get:
δmin=π2A\delta_{\text{min}} = \pi - 2A

Thus, the angle of minimum deviation is π2A\pi - 2A.