Solveeit Logo

Question

Question: If the real function \[f:X\to \left[ 2,6 \right]\] , where \[f\left( x \right)=\sqrt{3}\sin 2x-\cos ...

If the real function f:X[2,6]f:X\to \left[ 2,6 \right] , where f(x)=3sin2xcos2x+4f\left( x \right)=\sqrt{3}\sin 2x-\cos 2x+4 is one-one onto then possible X among the following is
(A) [π2,π2]\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]
(B) [π4,π4]\left[ \dfrac{-\pi }{4},\dfrac{\pi }{4} \right]
(C) [π6,π3]\left[ \dfrac{-\pi }{6},\dfrac{\pi }{3} \right]
(D) [π,π]\left[ -\pi ,\pi \right]

Explanation

Solution

Transform the given function, f(x)=3sin2xcos2x+4f\left( x \right)=\sqrt{3}\sin 2x-\cos 2x+4 as f(x)=2.12(3sin2xcos2x)+4f\left( x \right)=2.\dfrac{1}{2}\left( \sqrt{3}\sin 2x-\cos 2x \right)+4 . Now, simplify it using the formula sin(AB)=sinAcosBsinBcosA\sin \left( A-B \right)=\sin A\cos B-\sin B\cos A . The maximum and minimum value of the sine function is 1 and -1 respectively. We know that sin(π2)=1\sin \left( \dfrac{\pi }{2} \right)=1 and sin(π2)=1\sin \left( \dfrac{-\pi }{2} \right)=-1 . Using this get the values of x corresponding to which the function y=f(x)=2sin(2xπ6)+4y=f\left( x \right)=2\sin \left( 2x-\dfrac{\pi }{6} \right)+4 , has the maximum and minimum value. Now, plot the graph of the function and get those intervals of x in which y has different values corresponding to different values of x.

Complete step by step answer:
According to the question, we have the function,
f(x)=3sin2xcos2x+4f\left( x \right)=\sqrt{3}\sin 2x-\cos 2x+4 ……………………………(1)
It is given that the range of this function is [2,6]\left[ 2,6 \right] . It means that the minimum value of the function f(x)f\left( x \right) is equal to 2 and the maximum value of the function f(x)f\left( x \right) is equal to 6.
First of all, we need to simplify the function f(x)f\left( x \right) .
Transforming equation (1), we get
f(x)=2.12(3sin2xcos2x)+4\Rightarrow f\left( x \right)=2.\dfrac{1}{2}\left( \sqrt{3}\sin 2x-\cos 2x \right)+4
f(x)=2(32sin2x12cos2x)+4\Rightarrow f\left( x \right)=2\left( \dfrac{\sqrt{3}}{2}\sin 2x-\dfrac{1}{2}\cos 2x \right)+4 ………………………………….(2)
We know that, cos(π6)=32\cos \left( \dfrac{\pi }{6} \right)=\dfrac{\sqrt{3}}{2} and sin(π6)=12\sin \left( \dfrac{\pi }{6} \right)=\dfrac{1}{2} …………………………..(3)
Now, from equation (2) and equation (3), we get
\Rightarrow f\left( x \right)=2\left\\{ \sin 2x\cos \left( \dfrac{\pi }{6} \right)-\sin \left( \dfrac{\pi }{6} \right)\cos 2x \right\\}+4 …………………………..(4)
We know the formula, sin(AB)=sinAcosBsinBcosA\sin \left( A-B \right)=\sin A\cos B-\sin B\cos A …………………………..(5)
Now, replacing A by 2x and B by (π6)\left( \dfrac{\pi }{6} \right) in equation (5), we get
sin(2xπ6)=sin2xcos(π6)sin(π6)cos2xsin\left( 2x-\dfrac{\pi }{6} \right)=\sin 2x\cos \left( \dfrac{\pi }{6} \right)-\sin \left( \dfrac{\pi }{6} \right)\cos 2x ………………………….(6)
From equation (4) and equation (6), we get
f(x)=2sin(2xπ6)+4\Rightarrow f\left( x \right)=2\sin \left( 2x-\dfrac{\pi }{6} \right)+4 ………………………..(7)
We know that the maximum value of the sine function is 1.
So, the function f(x)f\left( x \right) is maximum when the value of sin(2xπ6)\sin \left( 2x-\dfrac{\pi }{6} \right) is equal to 1 and we know that
sin(π2)=1\sin \left( \dfrac{\pi }{2} \right)=1 . Therefore,
sin(2xπ6)=sin(π2)\Rightarrow \sin \left( 2x-\dfrac{\pi }{6} \right)=\sin \left( \dfrac{\pi }{2} \right)
2xπ6=sin1(sin(π2))\Rightarrow 2x-\dfrac{\pi }{6}={{\sin }^{-1}}\left( \sin \left( \dfrac{\pi }{2} \right) \right) ……………………………………(8)
We know the property, sin1(siny)=y{{\sin }^{-1}}\left( \sin y \right)=y ………………………………..(9)
From equation (8) and equation (9), we get

& \Rightarrow 2x-\dfrac{\pi }{6}=\left( \dfrac{\pi }{2} \right) \\\ & \Rightarrow 2x=\dfrac{\pi }{2}+\dfrac{\pi }{6} \\\ & \Rightarrow 2x=\dfrac{4\pi }{6} \\\ \end{aligned}$$ $$\Rightarrow x=\dfrac{\pi }{3}$$ …………………….(10) At $$x=\dfrac{\pi }{3}$$ , the function $$f\left( x \right)$$ is maximum, and the maximum value of the function $$f\left( x \right)$$ $$\begin{aligned} & \Rightarrow f\left( x \right)=2\sin \left( 2.\dfrac{\pi }{3}-\dfrac{\pi }{6} \right)+4 \\\ & \Rightarrow f\left( x \right)=2\sin \left( \dfrac{2\pi }{3}-\dfrac{\pi }{6} \right)+4 \\\ \end{aligned}$$ $$\Rightarrow f\left( x \right)=2\sin \left( \dfrac{\pi }{2} \right)+4$$ ………………..(11) We know that $$\sin \left( \dfrac{\pi }{2} \right)=1$$ ……………………(12) From equation (11) and equation (12), we get $$\begin{aligned} & \Rightarrow f\left( x \right)=2\left( 1 \right)+4 \\\ & \Rightarrow f\left( x \right)=2+4 \\\ \end{aligned}$$ $$\Rightarrow f\left( x \right)=6$$ The maximum value of the function $$f\left( x \right)$$ is equal to 6 …………………………..(13) We know that the maximum value of sine function is -1. So, the function $$f\left( x \right)$$ is minimum when the value of $$\sin \left( 2x-\dfrac{\pi }{6} \right)$$ is equal to -1 and we know that $$\sin \left( \dfrac{-\pi }{2} \right)=-1$$ . Therefore, $$\Rightarrow \sin \left( 2x-\dfrac{\pi }{6} \right)=\sin \left( \dfrac{-\pi }{2} \right)$$ $$\Rightarrow 2x-\dfrac{\pi }{6}={{\sin }^{-1}}\left( \sin \left( \dfrac{-\pi }{2} \right) \right)$$ ……………………………………(14) We know the property, $${{\sin }^{-1}}\left( \sin y \right)=y$$ ………………………………..(15) From equation (14) and equation (15), we get $$\begin{aligned} & \Rightarrow 2x-\dfrac{\pi }{6}=\left( \dfrac{-\pi }{2} \right) \\\ & \Rightarrow 2x=-\dfrac{\pi }{2}+\dfrac{\pi }{6} \\\ & \Rightarrow 2x=\dfrac{-2\pi }{6} \\\ \end{aligned}$$ $$\Rightarrow x=\dfrac{-\pi }{6}$$ …………………….(16) At $$x=\dfrac{-\pi }{6}$$ , the function $$f\left( x \right)$$ is minimum, and the minimum value of the function $$f\left( x \right)$$ $$\begin{aligned} & \Rightarrow f\left( x \right)=2\sin \left( 2.\dfrac{-\pi }{6}-\dfrac{\pi }{6} \right)+4 \\\ & \Rightarrow f\left( x \right)=2\sin \left( \dfrac{-\pi }{3}-\dfrac{\pi }{6} \right)+4 \\\ \end{aligned}$$ $$\Rightarrow f\left( x \right)=2\sin \left( \dfrac{-\pi }{2} \right)+4$$ ………………..(17) We know that $$\sin \left( \dfrac{-\pi }{2} \right)=-1$$ ……………………(18) From equation (17) and equation (18), we get $$\begin{aligned} & \Rightarrow f\left( x \right)=2\left( -1 \right)+4 \\\ & \Rightarrow f\left( x \right)=-2+4 \\\ \end{aligned}$$ $$\Rightarrow f\left( x \right)=2$$ The minimum value of the function $$f\left( x \right)$$ is equal to 2 …………………………..(19) Now, plotting graph of the function $$y=f\left( x \right)=2\sin \left( 2x-\dfrac{\pi }{6} \right)+4$$ , we get ![](https://www.vedantu.com/question-sets/7415417e-b247-4536-b900-898cd7a5c8545832552232333900298.png) We know that one-one onto functions doesn’t have the same value of y for different values of x. And we can see in the graph that when $$x\in \left( \dfrac{-\pi }{6},\dfrac{\pi }{3} \right)$$ then, y has different values corresponding to different values of x. The interval $$x\in \left( \dfrac{-\pi }{6},\dfrac{\pi }{3} \right)$$ also includes the range of y. Therefore, the given function is one-one onto when $$x\in \left( \dfrac{-\pi }{6},\dfrac{\pi }{3} \right)$$ . **So, the correct answer is “Option C”.** **Note:** In this question, one might think to take the periodicity of the sine function that is, $$\left( 0,2\pi \right)$$ as the interval for the one-one onto function. This is wrong because in the interval $$\left( 0,2\pi \right)$$ the graph includes the same range on the y-axis between the x-range which is a contradiction for one-one onto function.