Solveeit Logo

Question

Mathematics Question on Sequence and series

If the ratio of the sums of mm and nn terms of an A.PA.P. is m2:n2m^2 : n^2, then the ratio of its mthm^{th} and nthn^{th} terms is

A

(2m+1):(2n+1)\left(2m +1\right) : \left(2n +1 \right)

B

(2m1):(2n1)\left(2m -1\right) : \left(2n - 1 \right)

C

m:n m : n

D

(m1):(n1)\left(m -1\right) : \left(n - 1 \right)

Answer

(2m1):(2n1)\left(2m -1\right) : \left(2n - 1 \right)

Explanation

Solution

SmSn=m2n2\frac{S_{m}}{S_{n}} = \frac{m^{2}}{n^{2}} Smm2=Snn2=λ\Rightarrow \frac{S_{m}}{m^{2}} = \frac{S_{n}}{n^{2}} = \lambda (say). If TrT_{r} be the rthr^{th} term, then Tm=SmSm1T_{m} = S_{m} -S_{m-1} Tm=λ(m2(m21)2)\Rightarrow T_{m} = \lambda\left(m^{2} -\left(m^{2}-1\right)^{2}\right) =λ(2m1)= \lambda\left(2m - 1\right). Similarly Tn=λ(2n1)T_{n} = \lambda\left(2n - 1\right) Tm:Tn\therefore T_{m} : T_{n} =(2m1):(2n1) = \left(2m -1 \right) : \left(2n - 1\right)