Solveeit Logo

Question

Question: If the ratio of the sum of \(n\) terms of two A.P.'s be \(( 7 n + 1 ) : ( 4 n + 27 )\), then the rat...

If the ratio of the sum of nn terms of two A.P.'s be (7n+1):(4n+27)( 7 n + 1 ) : ( 4 n + 27 ), then the ratio of their terms will be.

A

2:32 : 3

B

3:43 : 4

C

4:34 : 3

D

5:65 : 6

Answer

4:34 : 3

Explanation

Solution

Let SnS _ { n } and be the sums of n terms of two A.P.'s and T11T _ { 11 } and be the respective terms, then

SnSn=n2[2a+(n1)d]n2[2a+(n1)d]=7n+14n+27\frac { S _ { n } } { S _ { n } ^ { \prime } } = \frac { \frac { n } { 2 } [ 2 a + ( n - 1 ) d ] } { \frac { n } { 2 } \left[ 2 a ^ { \prime } + ( n - 1 ) d ^ { \prime } \right] } = \frac { 7 n + 1 } { 4 n + 27 }

\Rightarrow a+(n1)2da+(n1)2d=7n+14n+27\frac { a + \frac { ( n - 1 ) } { 2 } d } { a ^ { \prime } + \frac { ( n - 1 ) } { 2 } d ^ { \prime } } = \frac { 7 n + 1 } { 4 n + 27 }

Now put n=21n = 21 ,

we get a+10da+10d=T11T11=148111=43\frac { a + 10 d } { a ^ { \prime } + 10 d ^ { \prime } } = \frac { T _ { 11 } } { T _ { 11 } ^ { \prime } } = \frac { 148 } { 111 } = \frac { 4 } { 3 } .

Note : If ratio of sum of nn terms of two A.P.'s are given in terms of nn and ratio of their pthp ^ { t h } terms are to be found then put n=2p1n = 2 p - 1. Here we put n=11×21=21n = 11 \times 2 - 1 = 21.