Solveeit Logo

Question

Physics Question on elastic moduli

If the ratio of lengths, radii and Young's modulus of steel and brass wires shown in the figure are a,ba, b and cc respectively, the ratio between' the increase in lengths of brass and steel wires would be

A

b2a2c\frac{b^2 a}{2c}

B

bc2a2\frac{bc}{2a^2}

C

ba22c\frac{ba^2 }{2c}

D

2b2ca\frac{2b^2c}{a}

Answer

2b2ca\frac{2b^2c}{a}

Explanation

Solution

Free body diagram of the two blocks are
Given, l1l2=a,r1r2=b,Y1Y2\frac{l_{1}}{l_{2} } = a, \frac{r_{1}}{r_{2}} = b , \frac{Y_{1}}{Y_{2}}
Let Young's modulus of steel is Y1Y_1 and of brass is Y2Y_2
Y1=F1.l1A1.Δl1\therefore \, \, Y_{1} = \frac{F_{1}. l_{1}}{A_{1} . \Delta l_{1}} ......(i)
And Y2=F2.l2A2Δl2Y_{2} = \frac{F_{2}.l_{2}}{A_{2} \Delta l_{2}} ....(ii)
Diving E (i) by E (ii), we get
Y1Y2=F1l1A1l1F2.l2A2.Δl2\frac{Y_{1}}{Y_{2} } = \frac{\frac{F_{1}l_{1}}{A_{1}l_{1}}}{\frac{F_{2}.l_{2}}{A_{2} . \Delta l_{2}}}
Or Y1Y2=F1.A2.l1.Δl2F2.A1.l2.Δl1\frac{Y_{1}}{Y_{2} } = \frac{F_{1}.A_{2} .l_{1}. \Delta l_{2}}{F_{2} .A_{1} .l_{2} . \Delta l_{1}} ........(iii)
Force on steel wire from free body diagram
T=F1=(2g)T= F_{1} = \left(2g\right) newton
Force on brass wire from free body diagram
F2=T=T+2g=(4g)F_{2} = T� = T + 2g = \left(4g\right) newton
Now, putting the value of F1,F2F_1, F_2, in E (iii), we get
Y1Y2=2g4g.πr22πr12.l2l2.Δl2Δl1\frac{Y_{1}}{Y_{2} } = \frac{2g}{4g} . \frac{\pi r^{2}_{2}}{\pi r^{2}_{1}} . \frac{l_{2}}{l_{2}} . \frac{\Delta l_{2}}{\Delta l_{1}}
Or c=121b2.aΔl2Δl1c = \frac{1}{2} \frac{1}{b^{2} } . a \frac{\Delta l_{2}}{\Delta l_{1}}
Or Δl1Δl2=a2b2c \frac{\Delta l_{1}}{\Delta l_{2}} = \frac{a}{2b^{2} c }