Solveeit Logo

Question

Physics Question on Stress and Strain

If the ratio of lengths, radii and Young's modulus of steel and brass wires shown in the figure are a,ba, b and cc respectively, the ratio between the increase in lengths of brass and steel wires would be

A

b2a2c\frac{b^{2}a}{2c}

B

bc2a2\frac{bc}{2a^2}

C

ba22c\frac{ba^{2}}{2c}

D

c2b2c\frac{c}{2b^2c}

Answer

c2b2c\frac{c}{2b^2c}

Explanation

Solution

Given, l1l2=a,r1r2=b,Y1Y2=c\frac{l_{1}}{l_{2}} =a, \frac{r_{1}}{r_{2}} =b, \frac{Y_{1}}{Y_{2}} =c
Free body diagram of the two blocks brass and steel are
Let Young's modulus of steel is Y1Y_1 and of brass is Y2Y_2.
Y1=F1.l1A1.Δl1\therefore Y_{1} = \frac{F_{1} .l_{1}}{A_{1} .\Delta l_{1}} .....(i)
and Y2=F2.l2A2.Δl2Y_{2} = \frac{F_{2} .l_{2}}{A_{2} .\Delta l_{2}} ....(ii)
Dividing E (i) by (ii),
Y1Y2=F1.l1A1.Δl1F2.l2A2.Δl2\frac{Y_{1}}{Y_{2}} = \frac{\frac{F_{1} .l_{1}}{A_{1} .\Delta l_{1}}}{\frac{F_{2} . l_{2}}{A_{2} .\Delta l_{2}}}
or Y1Y2=F1.A2.l1.Δl2F2.A1.l2.Δl1...(iii) \frac{Y_{1}}{Y_{2}} = \frac{F_{1} .A_{2} .l_{1} .\Delta l_{2}}{F_{2} .A_{1} .l_{2} .\Delta l_{1}} \,\,\,...(iii)
Force on steel wire from free body diagram
T=F1=(2g)T =F_{1} = \left(2g\right) newton
Force on brass wire from free body diagram
F2=T=T+2g=(4g)F_{2} =T' =T + 2g =\left(4g\right) newton
Now, putting the value of F1,F2,F_1, F_2, in E (iii), we get
Y1Y2=(2g4g).(πr22πr12).[l1l2].(Δl2Δl1)\frac{Y_{1}}{Y_{2}} = \left(\frac{2g}{4g}\right). \left(\frac{\pi r_{2}^{2}}{\pi r_{1}^{2}}\right) . \left[\frac{l_{1}}{l_{2}}\right] .\left(\frac{\Delta l_{2}}{\Delta l_{1}}\right)
or c=12(1b2).a(Δl2Δl1)c = \frac{1}{2} \left(\frac{1}{b^{2}}\right). a\left(\frac{\Delta l_{2}}{\Delta l_{1}}\right)
or Δl1Δl2=(a2b2c)\frac{\Delta l_{1}}{\Delta l_{2}} = \left(\frac{a}{2b^{2}c}\right)