Solveeit Logo

Question

Question: If the ratio of diameters, lengths and Young’s module of steel and brass wires shown in the figure a...

If the ratio of diameters, lengths and Young’s module of steel and brass wires shown in the figure are p, q and r respectively. Then the corresponding ratio of increase in their lengths would be

A

3q5p2r\frac{3q}{5p^{2}r}

B

5q3p2r\frac{5q}{3p^{2}r}

C

3q5pr\frac{3q}{5pr}

D

5q3pr\frac{5q}{3pr}

Answer

5q3p2r\frac{5q}{3p^{2}r}

Explanation

Solution

:

As young’s modulus, Y=FLAΔL=4FLπD2ΔLY = \frac{FL}{A\Delta L} = \frac{4FL}{\pi D^{2}\Delta L}

Where the symbols have their usual meanings.

ΔL=4FLπD2Y\therefore\Delta L = \frac{4FL}{\pi D^{2}Y}

ΔLSΔLB=FSFBLSLBDB2DS2YBYS\therefore\frac{\Delta L_{S}}{\Delta L_{B}} = \frac{F_{S}}{F_{B}}\frac{L_{S}}{L_{B}}\frac{D_{B}^{2}}{D_{S}^{2}}\frac{Y_{B}}{Y_{S}}

Where subscripts S and B refer to steel and brass respectively,

Here, FS=(2m+3m)g=5mgF_{S} = (2m + 3m)g = 5mg

FB=3mgF_{B} = 3mg

LSLB=q,DSDB=p,YSYB=r\frac{L_{S}}{L_{B}} = q,\frac{D_{S}}{D_{B}} = p,\frac{Y_{S}}{Y_{B}} = r

ΔLSΔLB=(5mg3mg)(q)(1p)2(1r)=5q3p2r\therefore\frac{\Delta L_{S}}{\Delta L_{B}} = \left( \frac{5mg}{3mg} \right)(q)\left( \frac{1}{p} \right)^{2}\left( \frac{1}{r} \right) = \frac{5q}{3p^{2}r}