Solveeit Logo

Question

Physics Question on mechanical properties of solids

If the ratio of diameters, lengths and Young's modulus of steel and copper wires shown in the figure are p,qp, q and ss respectively, then the corresponding ratio of increase in their lengths would be :

A

5q(7sp2) \frac{ 5q}{ (7sp^2)}

B

7q(5sp2) \frac{ 7q}{ (5sp^2)}

C

2q(5sp) \frac{ 2q}{ (5sp)}

D

7q(5sp) \frac{ 7q}{ (5sp)}

Answer

7q(5sp2) \frac{ 7q}{ (5sp^2)}

Explanation

Solution

As γ=FLAΔL=4FLπD2ΔL \gamma = \frac{FL}{A \Delta L} = \frac{ 4 FL}{ \pi D^2 \Delta L}
ΔL=4FLπD2γ\Delta L = \frac{4 FL}{ \pi D^2 \gamma}
ΔLsΔLc=FsLsDc2YcFcLcDs2Ys\therefore \, \, \, \frac{ \Delta L_s }{ \Delta L_c} = \frac{ F_s L_s {D_c}^2 Y _c}{ F_cL_c {D_s}^2 Y_s}
where subscripts 5 and C refer to copper and steel
respectively.
Here,
Fs=(5m+2m)g=7mgF_s = ( 5 m + 2 m) g = 7 mg
Fc=5mgF_c = 5 mg
LsLc=q,DsDc=p,YsYc=s\frac{L_s}{L_c} = q, \frac{D_s}{D_c} = p,\frac{Y_s}{Y_c} = s
ΔLsΔLc=(7mg5mg)(q)(1p)2(1s)=7q5p2s\therefore \, \, \, \, \, \frac{ \Delta L_s}{\Delta L_c} = \bigg(\frac{ 7 mg}{ 5 mg } \bigg) (q) \bigg( \frac{1}{p} \bigg)^2 \bigg( \frac{1}{s} \bigg) = \frac{ 7 q}{ 5 p^2 s}