Solveeit Logo

Question

Question: If the ratio \({}^{28}{C_{2r}}:{}^{24}{C_{2r - 4}} = 225:11\) , then find \(r\) ....

If the ratio 28C2r:24C2r4=225:11{}^{28}{C_{2r}}:{}^{24}{C_{2r - 4}} = 225:11 , then find rr .

Explanation

Solution

Equate both the sides after expanding the combinations using their definition. Cancel out the common terms from numerator and denominator. Now compare the obtained fraction with the given right side of the equation, i.e. 22511\dfrac{{225}}{{11}} . Both numerator and denominator should be compared to get the required value.

Complete step-by-step answer:
Let’s first understand the concept of combinations. A combination is a mathematical technique that determines the number of possible arrangements in a collection of items where the order of the selection does not matter. In combinations, you can select the items in any order.
Now suppose we want to choose kk objects from nn objects, then the number of combinations of kk objects chosen from nn objects is denoted by nCk{}^n{C_k} or \left( {\begin{array}{*{20}{c}} n \\\ k \end{array}} \right) , it follows that:
\Rightarrow \left( {\begin{array}{*{20}{c}} n \\\ k \end{array}} \right) = {}^n{C_k} = \dfrac{{n!}}{{k!\left( {n - k} \right)!}}
Let’s take the left side of the given equation and try to simplify it using the definition of combinations:
28C2r24C2r4=28!2r!(282r)!24!(2r4)!(242r+4)!\Rightarrow \dfrac{{{}^{28}{C_{2r}}}}{{{}^{24}{C_{2r - 4}}}} = \dfrac{{\dfrac{{28!}}{{2r!\left( {28 - 2r} \right)!}}}}{{\dfrac{{24!}}{{\left( {2r - 4} \right)!\left( {24 - 2r + 4} \right)!}}}}
Now, we can arrange these factorials in both numerator and denominator:
28C2r24C2r4=28!2r!(282r)!24!(2r4)!(242r+4)!=28!(2r4)!(282r)!2r!(282r)!×24!\Rightarrow \dfrac{{{}^{28}{C_{2r}}}}{{{}^{24}{C_{2r - 4}}}} = \dfrac{{\dfrac{{28!}}{{2r!\left( {28 - 2r} \right)!}}}}{{\dfrac{{24!}}{{\left( {2r - 4} \right)!\left( {24 - 2r + 4} \right)!}}}} = \dfrac{{28!\left( {2r - 4} \right)!\left( {28 - 2r} \right)!}}{{2r!\left( {28 - 2r} \right)! \times 24!}}
After this, we can cancel out the common factorial of (282r)\left( {28 - 2r} \right) from numerator and denominator:
28C2r24C2r4=28!(2r4)!(282r)!2r!(282r)!×24!=28!(2r4)!2r!×24!\Rightarrow \dfrac{{{}^{28}{C_{2r}}}}{{{}^{24}{C_{2r - 4}}}} = \dfrac{{28!\left( {2r - 4} \right)!\left( {28 - 2r} \right)!}}{{2r!\left( {28 - 2r} \right)! \times 24!}} = \dfrac{{28!\left( {2r - 4} \right)!}}{{2r! \times 24!}}
We can now expand 28!28! and 2r!2r! using the definition n!=n×(n1)!=n(n1)×(n2)!n! = n \times \left( {n - 1} \right)! = n\left( {n - 1} \right) \times \left( {n - 2} \right)! as:
28C2r24C2r4=28!(2r4)!2r!×24!=28×27×26×25×24!(2r4)!2r×(2r1)×(2r2)×(2r3)×(2r4)!24!\Rightarrow \dfrac{{{}^{28}{C_{2r}}}}{{{}^{24}{C_{2r - 4}}}} = \dfrac{{28!\left( {2r - 4} \right)!}}{{2r! \times 24!}} = \dfrac{{28 \times 27 \times 26 \times 25 \times 24!\left( {2r - 4} \right)!}}{{2r \times \left( {2r - 1} \right) \times \left( {2r - 2} \right) \times \left( {2r - 3} \right) \times \left( {2r - 4} \right)!24!}}
Now, we can simplify it further as:
28C2r24C2r4=28×27×26×25×24!(2r4)!2r×(2r1)×(2r2)×(2r3)×(2r4)!24!=28×27×26×252r×(2r1)×(2r2)×(2r3)\Rightarrow \dfrac{{{}^{28}{C_{2r}}}}{{{}^{24}{C_{2r - 4}}}} = \dfrac{{28 \times 27 \times 26 \times 25 \times 24!\left( {2r - 4} \right)!}}{{2r \times \left( {2r - 1} \right) \times \left( {2r - 2} \right) \times \left( {2r - 3} \right) \times \left( {2r - 4} \right)!24!}} = \dfrac{{28 \times 27 \times 26 \times 25}}{{2r \times \left( {2r - 1} \right) \times \left( {2r - 2} \right) \times \left( {2r - 3} \right)}}
Let’s substitute this into the given equation, we get:
28C2r24C2r4=28×27×26×252r×(2r1)×(2r2)×(2r3)=22511\Rightarrow \dfrac{{{}^{28}{C_{2r}}}}{{{}^{24}{C_{2r - 4}}}} = \dfrac{{28 \times 27 \times 26 \times 25}}{{2r \times \left( {2r - 1} \right) \times \left( {2r - 2} \right) \times \left( {2r - 3} \right)}} = \dfrac{{225}}{{11}}
Therefore, from the above equation, we can conclude that the denominator of the left side must have 1111 as one of its factors. There is no multiple of 1111 in numerator. Since 1111 is a prime number and cannot be cancelled out with a factor in the numerator.
Thus, one of the numbers from 2r,(2r1),(2r2) and (2r3)2r,\left( {2r - 1} \right),\left( {2r - 2} \right){\text{ and }}\left( {2r - 3} \right) in denominator must be 1111.
Also here 2r and (2r2) 2r{\text{ and }}\left( {2r - 2} \right){\text{ }} are multiples of two and hence an even number. But 1111 is a prime, so it should be one of (2r1) or (2r3)\left( {2r - 1} \right){\text{ or }}\left( {2r - 3} \right) .
If 2r1=112r - 1 = 11 then r=11+12=6 \Rightarrow r = \dfrac{{11 + 1}}{2} = 6 and if 2r3=112r - 3 = 11 then r=11+32=7 \Rightarrow r = \dfrac{{11 + 3}}{2} = 7
Thus, we can say the value of rr is either 66 or 77.
For r=6r = 6 , we get:
28C2r24C2r4=28×27×26×252r×(2r1)×(2r2)×(2r3)=28×27×26×2512×11×10×9=4551122511\Rightarrow \dfrac{{{}^{28}{C_{2r}}}}{{{}^{24}{C_{2r - 4}}}} = \dfrac{{28 \times 27 \times 26 \times 25}}{{2r \times \left( {2r - 1} \right) \times \left( {2r - 2} \right) \times \left( {2r - 3} \right)}} = \dfrac{{28 \times 27 \times 26 \times 25}}{{12 \times 11 \times 10 \times 9}} = \dfrac{{455}}{{11}} \ne \dfrac{{225}}{{11}}
So, for r=7r = 7 , we get:
28C2r24C2r4=28×27×26×252r×(2r1)×(2r2)×(2r3)=28×27×26×2514×13×12×11=22511\Rightarrow \dfrac{{{}^{28}{C_{2r}}}}{{{}^{24}{C_{2r - 4}}}} = \dfrac{{28 \times 27 \times 26 \times 25}}{{2r \times \left( {2r - 1} \right) \times \left( {2r - 2} \right) \times \left( {2r - 3} \right)}} = \dfrac{{28 \times 27 \times 26 \times 25}}{{14 \times 13 \times 12 \times 11}} = \dfrac{{225}}{{11}}
Hence, we get the left side of the equation equal to the right side of the equation.
Therefore value of rr is 77

Note: Notice that the use of the definition of the combination nCr{}^n{C_r} was the most crucial part of the solution. An alternative approach to this problem can be equating both sides as:2r(2r1)(2r2)(2r3)=28×27×26×25×11225=14×13×12×11 \Rightarrow 2r\left( {2r - 1} \right)\left( {2r - 2} \right)\left( {2r - 3} \right) = \dfrac{{28 \times 27 \times 26 \times 25 \times 11}}{{225}} = 14 \times 13 \times 12 \times 11 .Now putting 2r=142r = 14 for finding the values of rr .