Solveeit Logo

Question

Question: If the range of the function \( f ( x ) = \frac{x - 1}{p - x^2 + 1} \) does not contain any values b...

If the range of the function f(x)=x1px2+1f ( x ) = \frac{x - 1}{p - x^2 + 1} does not contain any values belonging to the interval [1,13][ - 1 , - \frac{1}{3} ], then what is the true set of values of pp?

Answer

(,2][1/4,)(-\infty, -2] \cup [1/4, \infty)

Explanation

Solution

The function is given by f(x)=x1px2+1f(x) = \frac{x-1}{p-x^2+1}. Let y=f(x)y = f(x). y(px2+1)=x1y(p-x^2+1) = x-1 ypyx2+y=x1yp - yx^2 + y = x - 1 yx2+x(yp+y+1)=0yx^2 + x - (yp + y + 1) = 0

This is a quadratic equation in xx for y0y \ne 0. For xx to be real, the discriminant must be non-negative. Δ=124(y)((yp+y+1))=1+4y(yp+y+1)=1+4y2p+4y2+4y=4py2+4y2+4y+1\Delta = 1^2 - 4(y)(-(yp+y+1)) = 1 + 4y(yp+y+1) = 1 + 4y^2p + 4y^2 + 4y = 4py^2 + 4y^2 + 4y + 1. For real xx, we must have 4y2+(4p+4)y+104y^2 + (4p+4)y + 1 \ge 0. Let g(y)=4y2+(4p+4)y+1g(y) = 4y^2 + (4p+4)y + 1. The range of f(x)f(x) (for y0y \ne 0) is the set of yy such that g(y)0g(y) \ge 0.

If y=0y=0, the equation becomes x(0p+0+1)=0x - (0 \cdot p + 0 + 1) = 0, which gives x=1x=1. For x=1x=1 to be in the domain of f(x)f(x), the denominator p12+1=pp-1^2+1 = p must be non-zero. If p0p \ne 0, f(1)=11p1+1=0/p=0f(1) = \frac{1-1}{p-1+1} = 0/p = 0, so y=0y=0 is in the range. If p=0p=0, x=1x=1 is not in the domain.

The problem states that the range of f(x)f(x) does not contain any values in the interval [1,1/3][-1, -1/3]. This means that for any y[1,1/3]y \in [-1, -1/3], yy is not in the range of f(x)f(x). The set of yy values for which g(y)0g(y) \ge 0 must not intersect the interval [1,1/3][-1, -1/3].

The quadratic g(y)=4y2+(4p+4)y+1g(y) = 4y^2 + (4p+4)y + 1 is a parabola opening upwards. The inequality g(y)0g(y) \ge 0 holds for yy outside the roots of g(y)=0g(y)=0, if real roots exist. If g(y)g(y) has no real roots, g(y)>0g(y) > 0 for all yy, so the range is (,)(-\infty, \infty), which contains [1,1/3][-1, -1/3]. This case is not possible. g(y)g(y) has real roots if the discriminant of g(y)g(y) is non-negative. Δg=(4p+4)24(4)(1)=16(p+1)216=16((p+1)21)\Delta_g = (4p+4)^2 - 4(4)(1) = 16(p+1)^2 - 16 = 16((p+1)^2 - 1). Δg0    (p+1)210    (p+1)21    p+11\Delta_g \ge 0 \implies (p+1)^2 - 1 \ge 0 \implies (p+1)^2 \ge 1 \implies p+1 \ge 1 or p+11    p0p+1 \le -1 \implies p \ge 0 or p2p \le -2.

If real roots y1,y2y_1, y_2 exist (y1y2y_1 \le y_2), the range of yy where g(y)0g(y) \ge 0 is (,y1][y2,)(-\infty, y_1] \cup [y_2, \infty). The condition that the range does not contain [1,1/3][-1, -1/3] means that [1,1/3][-1, -1/3] must be contained entirely within the region where g(y)<0g(y) < 0. Since g(y)g(y) is a parabola opening upwards, g(y)<0g(y) < 0 between the roots y1y_1 and y2y_2. So, we must have y11y_1 \le -1 and y21/3y_2 \ge -1/3. The roots of g(y)=0g(y)=0 are y=(4p+4)±16((p+1)21)8=(p+1)±(p+1)212y = \frac{-(4p+4) \pm \sqrt{16((p+1)^2 - 1)}}{8} = \frac{-(p+1) \pm \sqrt{(p+1)^2 - 1}}{2}. So, y1=(p+1)(p+1)212y_1 = \frac{-(p+1) - \sqrt{(p+1)^2 - 1}}{2} and y2=(p+1)+(p+1)212y_2 = \frac{-(p+1) + \sqrt{(p+1)^2 - 1}}{2}.

We need y11y_1 \le -1 and y21/3y_2 \ge -1/3. Condition 1: y11y_1 \le -1 (p+1)(p+1)2121\frac{-(p+1) - \sqrt{(p+1)^2 - 1}}{2} \le -1 (p+1)(p+1)212-(p+1) - \sqrt{(p+1)^2 - 1} \le -2 2(p+1)(p+1)212 - (p+1) \le \sqrt{(p+1)^2 - 1} 1p(p+1)211 - p \le \sqrt{(p+1)^2 - 1} This inequality holds if 1p01-p \le 0 (i.e., p1p \ge 1) and Δg0\Delta_g \ge 0. If p1p \ge 1, then p0p \ge 0, so Δg0\Delta_g \ge 0 is satisfied. Thus, for p1p \ge 1, y11y_1 \le -1 holds. If 1p>01-p > 0 (i.e., p<1p < 1), we must square both sides: (1p)2(p+1)21(1-p)^2 \le (p+1)^2 - 1. 12p+p2p2+2p+111 - 2p + p^2 \le p^2 + 2p + 1 - 1 12p2p1 - 2p \le 2p 14p    p1/41 \le 4p \implies p \ge 1/4. Combined with p<1p < 1, this gives 1/4p<11/4 \le p < 1. We also need Δg0\Delta_g \ge 0, which means p2p \le -2 or p0p \ge 0. For 1/4p<11/4 \le p < 1, we have p0p \ge 0, so Δg0\Delta_g \ge 0 is satisfied. The condition y11y_1 \le -1 holds for p1p \ge 1 or 1/4p<11/4 \le p < 1. Thus, y11y_1 \le -1 holds for p1/4p \ge 1/4 or p2p \le -2.

Condition 2: y21/3y_2 \ge -1/3 (p+1)+(p+1)2121/3\frac{-(p+1) + \sqrt{(p+1)^2 - 1}}{2} \ge -1/3 (p+1)+(p+1)212/3-(p+1) + \sqrt{(p+1)^2 - 1} \ge -2/3 (p+1)21p+12/3\sqrt{(p+1)^2 - 1} \ge p+1 - 2/3 (p+1)21p+1/3\sqrt{(p+1)^2 - 1} \ge p + 1/3 We need Δg0\Delta_g \ge 0, so p2p \le -2 or p0p \ge 0. If p+1/30p+1/3 \le 0 (i.e., p1/3p \le -1/3), the inequality (p+1)21non-positive\sqrt{(p+1)^2 - 1} \ge \text{non-positive} is true whenever the square root is defined. The square root is defined for p2p \le -2 or p0p \ge 0. If p2p \le -2, then p1/3p \le -1/3 is true, so y21/3y_2 \ge -1/3 holds for p2p \le -2. If p0p \ge 0, we need to consider p1/3p \le -1/3. This is not possible for p0p \ge 0.

If p+1/3>0p+1/3 > 0 (i.e., p>1/3p > -1/3), we must square both sides: (p+1)21(p+1/3)2(p+1)^2 - 1 \ge (p+1/3)^2. p2+2p+11p2+2p/3+1/9p^2 + 2p + 1 - 1 \ge p^2 + 2p/3 + 1/9 p2+2pp2+2p/3+1/9p^2 + 2p \ge p^2 + 2p/3 + 1/9 2p2p/3+1/92p \ge 2p/3 + 1/9 4p/31/94p/3 \ge 1/9 p1934=112p \ge \frac{1}{9} \cdot \frac{3}{4} = \frac{1}{12}. Combined with p>1/3p > -1/3, this gives p1/12p \ge 1/12. We also need Δg0\Delta_g \ge 0, which means p2p \le -2 or p0p \ge 0. For p1/12p \ge 1/12, we have p0p \ge 0, so Δg0\Delta_g \ge 0 is satisfied. The condition y21/3y_2 \ge -1/3 holds for p2p \le -2 or p1/12p \ge 1/12.

We need both conditions to be satisfied: (p1/4p \ge 1/4 or p2p \le -2) AND (p1/12p \ge 1/12 or p2p \le -2). Let's analyze the intersection: If p2p \le -2, both conditions are satisfied. If p>2p > -2: We need p1/4p \ge 1/4 and p1/12p \ge 1/12. The intersection is p1/4p \ge 1/4. So, the values of pp for which y11y_1 \le -1 and y21/3y_2 \ge -1/3 is p2p \le -2 or p1/4p \ge 1/4.

We also need to consider the case y=0y=0. If p0p \ne 0, y=0y=0 is in the range. The interval [1,1/3][-1, -1/3] does not contain 0. So y=0y=0 being in the range does not violate the condition. If p=0p=0, the range is (,0)(0,){1/2}(-\infty, 0) \cup (0, \infty) \setminus \{-1/2\}. This range contains [1,1/3][-1, -1/3]. So p=0p=0 is not allowed. The condition p2p \le -2 or p1/4p \ge 1/4 excludes p=0p=0.

Thus, the true set of values of pp is (,2][1/4,)(-\infty, -2] \cup [1/4, \infty).