Solveeit Logo

Question

Mathematics Question on Geometric Progression

If the range of f(θ)=sin4θ+3cos2θsin4θ+cos2θ,θRf(\theta) = \frac{\sin^4\theta + 3\cos^2\theta}{\sin^4\theta + \cos^2\theta}, \, \theta \in \mathbb{R} is [α,β][\alpha, \beta], then the sum of the infinite G.P., whose first term is 6464 and the common ratio is αβ\frac{\alpha}{\beta}, is equal to ____.

Answer

The given function is:
f(θ)=sin4θ+3cos2θsin4θ+cos2θ.f(\theta) = \frac{\sin^4\theta + 3\cos^2\theta}{\sin^4\theta + \cos^2\theta}.
Substitute cos2θ=x\cos^2\theta = x, with x[0,1]x \in [0, 1]:
f(x)=sin4θ+3xsin4θ+x.f(x) = \frac{\sin^4\theta + 3x}{\sin^4\theta + x}.
Simplify:
f(x)=2xx+1+1.f(x) = \frac{2x}{x + 1} + 1.
The range of f(x)f(x) can be computed as:
fmin=1,fmax=3.f_{\min} = 1, \quad f_{\max} = 3.
Thus:
α=1,β=3.\alpha = 1, \quad \beta = 3.
The infinite geometric series is:
S=first term1common ratio.S = \frac{\text{first term}}{1 - \text{common ratio}}.
Substitute:
S=64113=6423=6432=96.S = \frac{64}{1 - \frac{1}{3}} = \frac{64}{\frac{2}{3}} = 64 \cdot \frac{3}{2} = 96.
Final Answer: 96.