Question
Mathematics Question on Probability Distribution
If the random variable X has the following distribution:X | 0 | 1 | 2 | otherwise |
---|---|---|---|---|
P(X) | k | 2k | 3k | 0 |
Match List-I with List-II:
Choose the correct answer from the options given below:
(A)- (I), (B)- (II), (C)- (III), (D)- (IV)
(A)- (IV), (B)- (III), (C)- (II), (D)- (I)
(A)- (I), (B)- (II), (C)- (IV), (D)- (III)
(A)- (III), (B)- (IV), (C)- (I), (D)- (II)
(A)- (IV), (B)- (III), (C)- (II), (D)- (I)
Solution
The given probabilities are k,2k,3k for X=0,1,2, respectively. Since the sum of probabilities must equal 1:
k+2k+3k=1⟹6k=1⟹k=61.
For (A) k: From above, k=61. Match: (A) -> (IV).
For (B) P(X<2): This is the sum of probabilities for X=0 and X=1:
P(X<2)=P(X=0)+P(X=1)=k+2k=3k.
Substituting k=61:
P(X<2)=3⋅61=21.
Match: (B) -> (III).
For (C) E(X): The expected value is:
E(X)=∑X⋅P(X)=0⋅k+1⋅2k+2⋅3k=0+2k+6k=8k.
Substituting k=61:
E(X)=8⋅61=34.
Match: (C) -> (II).
For (D) P(1≤X≤2): This is the sum of probabilities for X=1 and X=2:
P(1≤X≤2)=P(X=1)+P(X=2)=2k+3k=5k.
Substituting k=61:
P(1≤X≤2)=5⋅61=65.
Match: (D) -> (I).
Final matching: (A) -> (IV), (B) -> (III), (C) -> (II), (D) -> (I).