Solveeit Logo

Question

Question: If the radius of the circle \(x ^ { 2 } + y ^ { 2 } + 2 g x + 2 f y + c = 0\) be r, then it will tou...

If the radius of the circle x2+y2+2gx+2fy+c=0x ^ { 2 } + y ^ { 2 } + 2 g x + 2 f y + c = 0 be r, then it will touch both the axes, if.

A

g=f=rg = f = r

B

g=f=c=rg = f = c = r

C

g=f=c=rg = f = \sqrt { c } = r

D

g=fg = f and c2=rc ^ { 2 } = r

Answer

g=f=c=rg = f = \sqrt { c } = r

Explanation

Solution

Conditions are

g=f=rg = f = r and g2+f2c=r\sqrt { g ^ { 2 } + f ^ { 2 } - c } = r g=c\Rightarrow g = \sqrt { c } .