Solveeit Logo

Question

Physics Question on Decay Rate

If the radius of earth is reduced to three-fourth of its present value without change in its mass then value of duration of the day of earth will be ______ hours 30 minutes.

Answer

By conservation of angular momentum:

I1ω1=I2ω2I_1 \omega_1 = I_2 \omega_2

Moment of inertia of a sphere:

I=25MR2I = \frac{2}{5} M R^2

Angular velocity relation:

ω=2πT\omega = \frac{2 \pi}{T}

25MR22πT1=25M(34R)22πT2\frac{2}{5} M R^2 \cdot \frac{2 \pi}{T_1} = \frac{2}{5} M \left( \frac{3}{4} R \right)^2 \cdot \frac{2 \pi}{T_2}

Simplifying:

1T1=9161T2\frac{1}{T_1} = \frac{9}{16} \cdot \frac{1}{T_2}

T2=169T1T_2 = \frac{16}{9} \cdot T_1

Substituting T1=24T_1 = 24 hours:

T2=91624=272=13hours30minutes.T_2 = \frac{9}{16} \cdot 24 = \frac{27}{2} = 13 \, \text{hours} \, 30 \, \text{minutes}.

Explanation

Solution

By conservation of angular momentum:

I1ω1=I2ω2I_1 \omega_1 = I_2 \omega_2

Moment of inertia of a sphere:

I=25MR2I = \frac{2}{5} M R^2

Angular velocity relation:

ω=2πT\omega = \frac{2 \pi}{T}

25MR22πT1=25M(34R)22πT2\frac{2}{5} M R^2 \cdot \frac{2 \pi}{T_1} = \frac{2}{5} M \left( \frac{3}{4} R \right)^2 \cdot \frac{2 \pi}{T_2}

Simplifying:

1T1=9161T2\frac{1}{T_1} = \frac{9}{16} \cdot \frac{1}{T_2}

T2=169T1T_2 = \frac{16}{9} \cdot T_1

Substituting T1=24T_1 = 24 hours:

T2=91624=272=13hours30minutes.T_2 = \frac{9}{16} \cdot 24 = \frac{27}{2} = 13 \, \text{hours} \, 30 \, \text{minutes}.