Solveeit Logo

Question

Physics Question on Circular motion

If the radius of curvature of the path of two particles of the same mass are in the ratio 3:43:4, then in order to have constant centripetal force, their velocities will be in the ratio of:

A

3:2\sqrt{3} : 2

B

1:31 : \sqrt{3}

C

3:1\sqrt{3} : 1

D

2:32 : \sqrt{3}

Answer

3:2\sqrt{3} : 2

Explanation

Solution

Step 1: Given Data: - Masses m1=m2m_1 = m_2 - Radius ratio r1r2=34\frac{r_1}{r_2} = \frac{3}{4}

Step 2: Use the Centripetal Force Formula: - Centripetal force F=mv2rF = \frac{mv^2}{r}. - Since the centripetal force is constant, F1=F2F_1 = F_2: m1v12r1=m2v22r2\frac{m_1 v_1^2}{r_1} = \frac{m_2 v_2^2}{r_2}

Step 3: Simplify the Equation: - With m1=m2m_1 = m_2, we get: v12r1=v22r2\frac{v_1^2}{r_1} = \frac{v_2^2}{r_2}

v1v2=r1r2=34=32\Rightarrow \frac{v_1}{v_2} = \sqrt{\frac{r_1}{r_2}} = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2}

So, the correct answer is: 3:2\sqrt{3} : 2