Solveeit Logo

Question

Mathematics Question on Application of derivatives

If the radius of a spherical balloon increases by 0.2%. Find the percentage increase in its volume

A

0.008

B

0.0012

C

0.006

D

0.003

Answer

0.006

Explanation

Solution

Let radius of spherical balloon = r After increasing 0.2%, radius =r+r×0.2100=10021000r= r + r \times\frac{0.2}{100} = \frac{1002}{1000} r Original volume =43πr3= \frac{4}{3} \pi r^{3} and New volume =43π(10021000r)3= \frac{4}{3} \pi\left(\frac{1002}{1000}r\right)^{3} \therefore Increased volume =43π(10021000r)343πr3= \frac{4}{3} \pi \left(\frac{1002}{1000}r\right)^{3} - \frac{4}{3} \pi r^{3} =43πr3[(10021000)31]= \frac{4}{3} \pi r^{3} \left[\left(\frac{1002}{1000}\right)^{3} - 1\right] \therefore % increased in volume =43πr3[(1.002)31]43πr3×100= \frac{\frac{4}{3} \pi r^{3} \left[\left(1.002\right)^{3} - 1\right]}{\frac{4}{3} \pi r^{3}} \times100 =(1.0061)×100= (1.006 - 1) \times 100 =0.006×100=0.600=0.6= 0.006 \times 100 = 0.600 = 0.6 %