Solveeit Logo

Question

Physics Question on Nuclei

If the radius of a nucleus of mass number 33 is RR ,then the radius of a nucleus of mass number 8181 is

A

3R3\,R

B

9R9\,R

C

(27)1/2R(27)^{1/2}\,R

D

27R27\,R

Answer

3R3\,R

Explanation

Solution

Nuclear radius is proportional to A1/3A^{1 / 3} where, AA is mass number of nucleus. ie, RA1/3R \propto A^{1 / 3}
R1R2=[A1A2]1/3\frac{R_{1}}{R_{2}}=\left[\frac{A_{1}}{A_{2}}\right]^{1 / 3}
RR2=[381]1/3\frac{R}{R_{2}}=\left[\frac{3}{81}\right]^{1 / 3}
or RR2=13\frac{R}{R_{2}}=\frac{1}{3}
or R2=3RR_{2}=3\, R