Solveeit Logo

Question

Question: If the quadratic equation a*x*<sup>2</sup> + bx + 6 = 0 does not have real roots and b∈ R<sup>+</sup...

If the quadratic equation ax2 + bx + 6 = 0 does not have real roots and b∈ R+, then-

A

a > max. {b224,b6}\left\{ \frac{b^{2}}{24},b - 6 \right\}

B

a< max. {b224,b6}\left\{ \frac{b^{2}}{24},b - 6 \right\}

C

a> min. {b224,b6}\left\{ \frac{b^{2}}{24},b - 6 \right\}

D

a < min. {b224,b6}\left\{ \frac{b^{2}}{24},b - 6 \right\}

Answer

a > max. {b224,b6}\left\{ \frac{b^{2}}{24},b - 6 \right\}

Explanation

Solution

ax2 + bx + 6 = 0, roots are not real

⇒ D < 0 ⇒ b2 – 24a < 0 ⇒ a > b224\frac{b^{2}}{24} i.e., a is +ve …(1)

Also ƒ(–1) > 0 ⇒ a – b + 6 > 0

⇒ a > b – 6 …(2)

⇒ a > max. {b224,b –6}\left\{ \frac{b^{2}}{24},b\ –6 \right\}; using (1) and (2)

Hence (1) is correct answer.