Solveeit Logo

Question

Mathematics Question on Sequence and series

If the pth, qth and rth terms of an A.P. are in G.P., then the common ratio of the G.P. is

A

p+qr+q\frac{p+q}{r+q}

B

prpq\frac{p-r}{p-q}

C

rqqp\frac{r-q}{q-p}

D

none of these

Answer

rqqp\frac{r-q}{q-p}

Explanation

Solution

Let aa be the first term and dd be the common difference of the A.PA.P. Tp=a+(p1)dT_{p} = a+\left(p-1\right)d Tq=a+(q1)dT_{q} = a+\left(q-1\right)d Tr=a+(r1)dT_{r} = a+\left(r-1\right)d Since Tp,TqT_{p} , T_{q} are in G.PG.P. TqTp=TrTq=R \therefore\frac{T_{q}}{T_{p}} = \frac{T_{r}}{T_{q}} = R (Common ratio of G.PG.P.) a+(q1)da+(p1)d=a+(r1)da+(q1)d=R1 \therefore\frac{ a+\left(q-1\right)d}{a+\left(p-1\right)d} =\frac{ a+\left(r-1\right)d}{a+\left(q-1\right)d} = \frac{R}{1} a+(q1)d(pq)d=R1R \therefore \frac{a+\left(q-1\right)d}{\left(p-q\right)d} = \frac{R}{1-R} and (rq)da+(q1)d=R11\frac{\left(r-q\right)d}{a+\left(q-1\right)d} = \frac{R-1}{1} \therefore Multiply these two rqpq=R\frac{r-q}{p-q} = -R R=rqqp. \therefore R =\frac{ r-q}{q-p}.