Solveeit Logo

Question

Mathematics Question on geometric progression

If the pth, qth and rth terms of a G.P. are a, b and c, respectively. Prove that aqrbrpcpq=1.a^{q-r} b^{r-p} c^{p-q}=1.

Answer

Let A be the first term and R be the common ratio of the G.P.
According to the given information,
ARp-1 = a
ARq-1 = b
ARr-1 = c
aqrbrpcpqa^{q-r}b^{ r-p} c^{ p-q}
=Aqr×R(p1)(qr)cArp×R(q1)(rp)×Apq×R(r1)(pq)= A^{ q-r} ×R^{(p-1)(q-r)}c A ^{r-p} × R ^{(q-1) (r-p)} × A^{ p-q }× R ^{(r -1)(p-q)}
=Aqr+rp+pq×R(prprq+r)+(rqr+ppq)+(prpqr+q)= Aq^{ - r + r - p + p - q }× R ^{(pr- pr - q+ r) + (rq- r + p- pq) + (pr- p - qr+ q)}
= A0 x R0
= 1
Thus, the given result is proved.