Solveeit Logo

Question

Mathematics Question on Vector Algebra

If the projection of the vector a\vec {a} on b\vec{b} is a\overrightarrow{a} on b\overrightarrow{b} is a×b|\overrightarrow{a}\times \overrightarrow{b}| and if 3b=i+j+k,3\overrightarrow{b}=\vec{i}+\vec{j}+\vec{k}, then the angle between a\vec{a} and b\vec{b} is

A

π/3\pi /3

B

π/2\pi /2

C

π/4\pi /4

D

π/6\pi /6

Answer

π/3\pi /3

Explanation

Solution

Given, projection of a\vec{a} on b=a×b\overrightarrow{b}=|\overrightarrow{a}\times \overrightarrow{b}|
\Rightarrow a.bb=a×b\frac{\overrightarrow{a}\,.\,\overrightarrow{b}}{|\overrightarrow{b}|}=|\overrightarrow{a}\times \overrightarrow{b}|
\Rightarrow abcosθb=absinθ\frac{|\overrightarrow{a}||\overrightarrow{b}|\cos \theta }{|\overrightarrow{b}|}=|\overrightarrow{a}||\overrightarrow{b}|\sin \theta
\Rightarrow tanθ=1b\tan \theta =\frac{1}{|\overrightarrow{b}|}
\Rightarrow tanθ=11312+12+12\tan \theta =\frac{1}{\frac{1}{3}\sqrt{{{1}^{2}}+{{1}^{2}}+{{1}^{2}}}}
\Rightarrow tanθ=3\tan \theta =\sqrt{3}
\Rightarrow θ=π3\theta =\frac{\pi }{3}