Solveeit Logo

Question

Question: If the product of the matrix B = \(\begin{bmatrix} 2 & 6 & 4 \\ 1 & 0 & 1 \\ - 1 & 1 & - 1 \end{bma...

If the product of the matrix B = $\begin{bmatrix} 2 & 6 & 4 \ 1 & 0 & 1 \

  • 1 & 1 & - 1 \end{bmatrix}withamatrixAhasinverseC=with a matrix A has inverse C =\begin{bmatrix}
  • 1 & 0 & 1 \ 1 & 1 & 3 \ 2 & 0 & 2 \end{bmatrix}$, then A–1 equals-
A

$\begin{bmatrix}

  • 3 & - 5 & 5 \ 0 & 9 & 14 \ 2 & 2 & 6 \end{bmatrix}$
B

$\begin{bmatrix}

  • 3 & 5 & 5 \ 0 & 0 & 9 \ 2 & 14 & 16 \end{bmatrix}$
C

$\begin{bmatrix}

  • 3 & - 5 & - 5 \ 0 & 0 & 2 \ 2 & 14 & 6 \end{bmatrix}$
D

$\begin{bmatrix}

  • 3 & - 3 & - 5 \ 0 & 9 & 2 \ 2 & 14 & 6 \end{bmatrix}$
Answer

$\begin{bmatrix}

  • 3 & - 5 & - 5 \ 0 & 0 & 2 \ 2 & 14 & 6 \end{bmatrix}$
Explanation

Solution

We have (BA)–1 = C Ž A–1 B–1 = C Ž A–1 = CB

\ A–1 = $\begin{bmatrix}

  • 1 & 0 & 1 \ 1 & 1 & 3 \ 2 & 0 & 2 \end{bmatrix} \begin{bmatrix} 2 & 6 & 4 \ 1 & 0 & 1 \
  • 1 & 1 & - 1 \end{bmatrix}==\begin{bmatrix}
  • 3 & - 5 & - 5 \ 0 & 9 & 2 \ 2 & 14 & 6 \end{bmatrix}$