Question
Question: If the product of the matrix B = \(\begin{bmatrix} 2 & 6 & 4 \\ 1 & 0 & 1 \\ - 1 & 1 & - 1 \end{bma...
If the product of the matrix B = $\begin{bmatrix} 2 & 6 & 4 \ 1 & 0 & 1 \
- 1 & 1 & - 1 \end{bmatrix}withamatrixAhasinverseC=\begin{bmatrix}
- 1 & 0 & 1 \ 1 & 1 & 3 \ 2 & 0 & 2 \end{bmatrix}$, then A–1 equals-
A
$\begin{bmatrix}
- 3 & - 5 & 5 \ 0 & 9 & 14 \ 2 & 2 & 6 \end{bmatrix}$
B
$\begin{bmatrix}
- 3 & 5 & 5 \ 0 & 0 & 9 \ 2 & 14 & 16 \end{bmatrix}$
C
$\begin{bmatrix}
- 3 & - 5 & - 5 \ 0 & 0 & 2 \ 2 & 14 & 6 \end{bmatrix}$
D
$\begin{bmatrix}
- 3 & - 3 & - 5 \ 0 & 9 & 2 \ 2 & 14 & 6 \end{bmatrix}$
Answer
$\begin{bmatrix}
- 3 & - 5 & - 5 \ 0 & 0 & 2 \ 2 & 14 & 6 \end{bmatrix}$
Explanation
Solution
We have (BA)–1 = C Ž A–1 B–1 = C Ž A–1 = CB
\ A–1 = $\begin{bmatrix}
- 1 & 0 & 1 \ 1 & 1 & 3 \ 2 & 0 & 2 \end{bmatrix}\begin{bmatrix} 2 & 6 & 4 \ 1 & 0 & 1 \
- 1 & 1 & - 1 \end{bmatrix}=\begin{bmatrix}
- 3 & - 5 & - 5 \ 0 & 9 & 2 \ 2 & 14 & 6 \end{bmatrix}$