Question
Question: If the prime sign (′) represents differentiation w.r.t.x and ′(x) = sin x + sin 4x . cosx then ′\...
If the prime sign (′) represents differentiation w.r.t.x and
′(x) = sin x + sin 4x . cosx then ′(2x2+2π) at x = 2π is equal to –
A
0
B
–1
C
−22π
D
None of these
Answer
−22π
Explanation
Solution
′(2x2+2π) = dxdƒ(2x2+2π) = d(2x2+2π)dƒ(2x2+2π)
· dxd(2x2+2π)
Q ′(x) = dxdƒ(x) = sin x + sin 4x . cos x, we get
d(2x2+2π)dƒ(2x2+2π) = sin(2x2+2π) +
sin 4(2x2+2π). cos(2x2+2π)
= cos 2x2 + sin 8x2 . (–sin 2x2)
∴ ′(2x2+2π) = (cos 2x2 – sin 8x2 . sin 2x2) . 4x
∴ at x = 2π, ′ (2x2+2π) = (cos π – sin 4π . sin π)
. 4 . 2π = −22π.