Solveeit Logo

Question

Question: If the prime sign (′) represents differentiation w.r.t.x and ƒ′(x) = sin x + sin 4x . cosx then ƒ′\...

If the prime sign (′) represents differentiation w.r.t.x and

ƒ′(x) = sin x + sin 4x . cosx then ƒ′(2x2+π2)\left( 2x^{2} + \frac{\pi}{2} \right) at x = π2\sqrt{\frac{\pi}{2}} is equal to –

A

0

B

–1

C

22π- 2\sqrt{2\pi}

D

None of these

Answer

22π- 2\sqrt{2\pi}

Explanation

Solution

ƒ′(2x2+π2)\left( 2x^{2} + \frac{\pi}{2} \right) = dƒ(2x2+π2)dx\frac{dƒ\left( 2x^{2} + \frac{\pi}{2} \right)}{dx} = dƒ(2x2+π2)d(2x2+π2)\frac{dƒ\left( 2x^{2} + \frac{\pi}{2} \right)}{d\left( 2x^{2} + \frac{\pi}{2} \right)}

· d(2x2+π2)dx\frac{d\left( 2x^{2} + \frac{\pi}{2} \right)}{dx}

Q ƒ′(x) = dƒ(x)dx\frac{dƒ(x)}{dx} = sin x + sin 4x . cos x, we get

dƒ(2x2+π2)d(2x2+π2)\frac{dƒ\left( 2x^{2} + \frac{\pi}{2} \right)}{d\left( 2x^{2} + \frac{\pi}{2} \right)} = sin(2x2+π2)\left( 2x^{2} + \frac{\pi}{2} \right) +

sin 4(2x2+π2)\left( 2x^{2} + \frac{\pi}{2} \right). cos(2x2+π2)\left( 2x^{2} + \frac{\pi}{2} \right)

= cos 2x2 + sin 8x2 . (–sin 2x2)

∴ ƒ′(2x2+π2)\left( 2x^{2} + \frac{\pi}{2} \right) = (cos 2x2 – sin 8x2 . sin 2x2) . 4x

∴ at x = π2\sqrt{\frac{\pi}{2}}, ƒ′ (2x2+π2)\left( 2x^{2} + \frac{\pi}{2} \right) = (cos π – sin 4π . sin π)

. 4 . π2\sqrt{\frac{\pi}{2}} = 22π- 2\sqrt{2\pi}.