Solveeit Logo

Question

Question: If the position vectors of three points \(A,B\) and \(C\) are respectively **i** + **j** + **k**, 2*...

If the position vectors of three points A,BA,B and CC are respectively i + j + k, 2i + 3j – 4k and 7i + 4j + 9k, then the unit vector to the plane containing the triangle ABCABC is

A

31i – 18j – 9k

B

31i38j9 k2486\frac{31i - 38j - 9\ k}{\sqrt{2486}}

C

31i+18j+9k2486\frac{31i + 18j + 9k}{\sqrt{2486}}

D

None of these

Answer

31i38j9 k2486\frac{31i - 38j - 9\ k}{\sqrt{2486}}

Explanation

Solution

Unit vector perpendicular to plane of ΔABC\Delta ABC is, AB×ACAB×AC\frac{\overset{\rightarrow}{AB} \times \overset{\rightarrow}{AC}}{|\overset{\rightarrow}{AB} \times \overset{\rightarrow}{AC}|},

where AB=i+2j5k\overset{\rightarrow}{AB} = i + 2j - 5k and AC=6i+3j+8k\overset{\rightarrow}{AC} = 6i + 3j + 8k

AB×AC=31i38j9k\overset{\rightarrow}{AB} \times \overset{\rightarrow}{AC} = 31i - 38j - 9kand AB×AC=2486|\overset{\rightarrow}{AB} \times \overset{\rightarrow}{AC}| = \sqrt{2486}

∴ Required vector = 31i38j9k2486\frac{31i - 38j - 9k}{\sqrt{2486}}.