Solveeit Logo

Question

Mathematics Question on Vector Algebra

If the position vectors of three consecutive vertices, of a parallelogram are i+j+k,\vec{i}+\vec{j}+\vec{k}, i+3j+5k\vec{i}+3\vec{j}+5\vec{k} and 7i+9j+11k,7\vec{i}+9\vec{j}+11\vec{k}, then the coordinates of the fourth vertex are

A

(2,1,3)(2, 1, 3)

B

(6,7,8)(6, 7, 8)

C

(4,1,3)(4, 1, 3)

D

(7,7,7)(7, 7, 7)

Answer

(7,7,7)(7, 7, 7)

Explanation

Solution

Let the vertices of a parallelogram are A(1, 1, 1) B(1, 3, 5), C(7, 9, 11) and fourth vertex be D ( xx , y, z) Midpoint of AC is (4, 5, 6) and midpoint of BD is (1+x2,3+y2,5+z2)\left( \frac{1+x}{2},\frac{3+y}{2},\frac{5+z}{2} \right) .
In a parallelogram midpoint of diagonals are coincide.
\therefore 1+x2=4,3+y2=5,5+z2=6\frac{1+x}{2}=4,\frac{3+y}{2}=5,\frac{5+z}{2}=6
\Rightarrow x=7,y=7,z=7x=7,y=7,z=7