Solveeit Logo

Question

Question: If the position vectors of the points A, B, C be \(\mathbf{a},\mspace{6mu}\mathbf{b}\), \(\mathbf{3a...

If the position vectors of the points A, B, C be a,6mub\mathbf{a},\mspace{6mu}\mathbf{b}, 3a2b\mathbf{3a}\mathbf{-}\mathbf{2b} respectively, then the points A, B, C are

A

Collinear

B

Non-collinear

C

Form a right angled triangle

D

None of these

Answer

Collinear

Explanation

Solution

Here AB=ba\overset{\rightarrow}{AB} = \mathbf{b} - \mathbf{a} and AC=(3a2b)(a)=2(ba)\overset{\rightarrow}{AC} = (3\mathbf{a} - 2\mathbf{b}) - (\mathbf{a}) = - 2(\mathbf{b} - \mathbf{a})

Therefore, it is of the form AB=mAC.\overset{\rightarrow}{AB} = m\overset{\rightarrow}{AC}.

Hence A, B, C are collinear.