Solveeit Logo

Question

Question: If the position vectors of the points A, B, C be <img src="https://cdn.pureessence.tech/canvas_36.pn...

If the position vectors of the points A, B, C be and ai+bj+cka \mathbf { i } + b \mathbf { j } + c \mathbf { k } respectively, then the points A, B, C are collinear if

A

a=b=c=1a = b = c = 1

B

a=1,ba = 1 , b and are arbitrary scalars

C

a=b=c=0a = b = c = 0

D

c=0,a=1c = 0 , a = 1 and b is arbitrary scalars

Answer

c=0,a=1c = 0 , a = 1 and b is arbitrary scalars

Explanation

Solution

Here AB=2j\overrightarrow { A B } = - 2 \mathbf { j } BC=(a1)i+(b+1)j+ck\overrightarrow { B C } = ( a - 1 ) \mathbf { i } + ( b + 1 ) \mathbf { j } + c \mathbf { k }

The points are collinear, then AB=k(BC)\overrightarrow { A B } = k ( \overrightarrow { B C } )

2j=k{(a1)i+(b+1)j+ck}- 2 \mathbf { j } = k \{ ( a - 1 ) \mathbf { i } + ( b + 1 ) \mathbf { j } + c \mathbf { k } \}

On comparing, k(a1)=0k ( a - 1 ) = 0, k(b+1)=2k ( b + 1 ) = - 2 kc=0k c = 0.

Hence c=0c = 0 a=1a = 1 and bb is arbitrary scalar.