Question
Question: If the position vectors of the points A, B, C be <img src="https://cdn.pureessence.tech/canvas_36.pn...
If the position vectors of the points A, B, C be and ai+bj+ck respectively, then the points A, B, C are collinear if
A
a=b=c=1
B
a=1,b and are arbitrary scalars
C
a=b=c=0
D
c=0,a=1 and b is arbitrary scalars
Answer
c=0,a=1 and b is arbitrary scalars
Explanation
Solution
Here AB=−2j BC=(a−1)i+(b+1)j+ck
The points are collinear, then AB=k(BC)
−2j=k{(a−1)i+(b+1)j+ck}
On comparing, k(a−1)=0, k(b+1)=−2 kc=0.
Hence c=0 a=1 and b is arbitrary scalar.