Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

If the position vectors of the points A and B are 3i^\hat {i} + j^\hat {j} + 2k^\hat {k} and i^\hat {i} -2j^\hat {j} -4k^\hat {k} respectively, then the equation of the plane through B and perpendicular to AB is

A

2x+3y+6z+28=02x + 3y + 6z + 28 = 0

B

2x+3y+6z11=02x + 3y + 6z – 11 = 0

C

2x3y6z32=02x – 3y – 6z – 32 = 0

D

2x+3y+6z+9=02x + 3y + 6z + 9 = 0

Answer

2x+3y+6z+28=02x + 3y + 6z + 28 = 0

Explanation

Solution

Given:
Position vector of point A: rA=3i^+j^+2k^\vec{r}_A = 3\hat{i} + \hat{j} + 2\hat{k}
Position vector of point B: rB=i^2j^4k^\vec{r}_B = \hat{i} - 2\hat{j} - 4\hat{k}

Find Vector AB\vec{AB}:
AB=rBrA\vec{AB} = \vec{r}_B - \vec{r}_A
AB=(i^2j^4k^)(3i^+j^+2k^)\vec{AB} = (\hat{i} - 2\hat{j} - 4\hat{k}) - (3\hat{i} + \hat{j} + 2\hat{k})
AB=2i^3j^6k^\vec{AB} = -2\hat{i} - 3\hat{j} - 6\hat{k}

Equation of the Plane:
The equation of the plane perpendicular to AB\vec{AB} passing through point B (1,2,4)(1, -2, -4) is given by:
2x+3y+6z=21+3(2)+6(4)2x + 3y + 6z = 2 \cdot 1 + 3 \cdot (-2) + 6 \cdot (-4)
2x+3y+6z=26242x + 3y + 6z = 2 - 6 - 24
2x+3y+6z=282x + 3y + 6z = -28
2x+3y+6z+28=02x + 3y + 6z + 28=0

So, the correct option is (A): 2x+3y+6z+28=02x + 3y + 6z +28=0