Solveeit Logo

Question

Question: If the position vector of the points A, B, C, D are \(3 \hat { \mathbf { i } } - 2 \hat { \mathbf...

If the position vector of the points A, B, C, D are
3i^2j^k^3 \hat { \mathbf { i } } - 2 \hat { \mathbf { j } } - \hat { \mathrm { k } } , 2i^+3j^4k^2 \hat { \mathrm { i } } + 3 \hat { \mathrm { j } } - 4 \hat { \mathrm { k } } , – ,

4i^+5j^+λk^4 \hat { \mathrm { i } } + 5 \hat { \mathrm { j } } + \lambda \hat { \mathrm { k } } respectively. If the points A, B, C, D lie on a plane then the value of l equals-

A

14617\frac { - 146 } { 17 }

B

14617\frac { 146 } { 17 }

C

17146\frac { 17 } { 146 }

D

17146\frac { - 17 } { 146 }

Answer

14617\frac { - 146 } { 17 }

Explanation

Solution

If the points are coplanar then their P.V., b\overrightarrow { \mathrm { b } } ,, must satisfy the condition [ b\overrightarrow { \mathrm { b } },,]=0

̃ 15343317λ+1\left| \begin{array} { c c c } - 1 & 5 & - 3 \\ - 4 & 3 & 3 \\ 1 & 7 & \lambda + 1 \end{array} \right|= 0 ̃ l = – 14617\frac { 146 } { 17 }