Solveeit Logo

Question

Question: If the position vector of one end of the line segment AB be \(2\mathbf{i} + 3\mathbf{j} - \mathbf{k}...

If the position vector of one end of the line segment AB be 2i+3jk2\mathbf{i} + 3\mathbf{j} - \mathbf{k} and the position vector of its middle point be 3(i+j+k),3(\mathbf{i} + \mathbf{j} + \mathbf{k}), then the position vector of the other end is

A

4i+3j+5k4\mathbf{i} + 3\mathbf{j} + 5\mathbf{k}

B

4i3j+7k4\mathbf{i} - 3\mathbf{j} + 7\mathbf{k}

C

4i+3j+7k4\mathbf{i} + 3\mathbf{j} + 7\mathbf{k}

D

4i+3j7k4\mathbf{i} + 3\mathbf{j} - 7\mathbf{k}

Answer

4i+3j+7k4\mathbf{i} + 3\mathbf{j} + 7\mathbf{k}

Explanation

Solution

OA=2i+3jk,\overset{\rightarrow}{OA} = 2\mathbf{i} + 3\mathbf{j} - \mathbf{k}, OP=3(i+j+k),\overset{\rightarrow}{OP} = 3(\mathbf{i} + \mathbf{j} + \mathbf{k}), OB=?\overset{\rightarrow}{OB} = ?

we have OP=OA+OB2\overset{\rightarrow}{OP} = \frac{\overset{\rightarrow}{OA} + \overset{\rightarrow}{OB}}{2}

OB=2OPOA\Rightarrow \overset{\rightarrow}{OB} = 2\overset{\rightarrow}{OP} - \overset{\rightarrow}{OA}

=4i+3j+7k= 4\mathbf{i} + 3\mathbf{j} + 7\mathbf{k}

Trick : By inspection, middle point of 4i+3j+7k4\mathbf{i} + 3\mathbf{j} + 7\mathbf{k} and 2i+3jk2\mathbf{i} + 3\mathbf{j} - \mathbf{k} is 3(i+j+k).3(\mathbf{i} + \mathbf{j} + \mathbf{k}).