Solveeit Logo

Question

Question: If the position vector of a particle is \(\overset{\rightarrow}{r} = (3\widehat{i} + 4\widehat{j})\)...

If the position vector of a particle is r=(3i^+4j^)\overset{\rightarrow}{r} = (3\widehat{i} + 4\widehat{j}) meter and its angular velocity is ω=(j^+2k^)\overset{\rightarrow}{\omega} = (\widehat{j} + 2\widehat{k}) rad/sec then its linear velocity is (in m/s)

A

(8i^6j^+3k^)(8\widehat{i} - 6\widehat{j} + 3\widehat{k})

B

(3i^+6j^+8k^)(3\widehat{i} + 6\widehat{j} + 8\widehat{k})

C

(3i^+6j^+6k^)- (3\widehat{i} + 6\widehat{j} + 6\widehat{k})

D

(6i^+8j^+3k^)(6\widehat{i} + 8\widehat{j} + 3\widehat{k})

Answer

(8i^6j^+3k^)(8\widehat{i} - 6\widehat{j} + 3\widehat{k})

Explanation

Solution

v=ω×r\overset{\rightarrow}{v} = \overset{\rightarrow}{\omega} \times \overset{\rightarrow}{r}

=(3i^+4j^+0k^)×(0i^+j^+2k^)(3\widehat{i} + 4\widehat{j} + 0\widehat{k}) \times (0\widehat{i} + \widehat{j} + 2\widehat{k}) v=i^j^k^340012=8i^6j^+3k^\overset{\rightarrow}{v} = \left| \begin{matrix} \widehat{i} & \widehat{j} & \widehat{k} \\ 3 & 4 & 0 \\ 0 & 1 & 2 \end{matrix} \right| = 8\widehat{i} - 6\widehat{j} + 3\widehat{k}