Solveeit Logo

Question

Question: If the polars of (x<sub>1</sub>, y<sub>1</sub>) and (x<sub>2</sub>, y<sub>2</sub>) w.r.t. the hyperb...

If the polars of (x1, y1) and (x2, y2) w.r.t. the hyperbola x2a2y2b2=1\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1 are at right angles, then x1x2y1y2=\frac{x_{1}x_{2}}{y_{1}y_{2}} =

A

a2b2\frac{- a^{2}}{b^{2}}

B

a2b2\frac{a^{2}}{b^{2}}

C

a4b4\frac{a^{4}}{b^{4}}

D

a4b4- \frac{a^{4}}{b^{4}}

Answer

a4b4- \frac{a^{4}}{b^{4}}

Explanation

Solution

Polar of (x1, y1) w.r.t. the given hyperbola is xx1a2yy1b2=1\frac{xx_{1}}{a^{2}} - \frac{yy_{1}}{b^{2}} = 1.

Its slope = x1/a2y1/b2=b2x1a2y1\frac{x_{1}/a^{2}}{y_{1}/b^{2}} = \frac{b^{2}x_{1}}{a^{2}y_{1}}.

Similarly, slope of polar of (x2, y2) w.r.t. the given hyperbola is b2x2a2y2\frac{b^{2}x_{2}}{a^{2}y_{2}}.

\becausePolars are ⊥, ∴ b2x1a2y1.b2x2a2y2=1\frac{b^{2}x_{1}}{a^{2}y_{1}}.\frac{b^{2}x_{2}}{a^{2}y_{2}} = - 1 (or) x1x2y1y2=a4b4\frac{x_{1}x_{2}}{y_{1}y_{2}} = \frac{- a^{4}}{b^{4}}.