Solveeit Logo

Question

Question: If the polar with respect to \(y^{2} = 4ax\)touches the ellipse \(\frac{x^{2}}{\alpha^{2}} + \frac{y...

If the polar with respect to y2=4axy^{2} = 4axtouches the ellipse x2α2+y2β2=1,\frac{x^{2}}{\alpha^{2}} + \frac{y^{2}}{\beta^{2}} = 1, the locus of its pole is

A

x2α2y2(4a2α2/β2)=1\frac{x^{2}}{\alpha^{2}} - \frac{y^{2}}{(4a^{2}\alpha^{2}/\beta^{2})} = 1

B

x2α2+β2y24a2=1\frac{x^{2}}{\alpha^{2}} + \frac{\beta^{2}y^{2}}{4a^{2}} = 1

C

α2x2+β2y2=1\alpha^{2}x^{2} + \beta^{2}y^{2} = 1

D

None of these

Answer

x2α2y2(4a2α2/β2)=1\frac{x^{2}}{\alpha^{2}} - \frac{y^{2}}{(4a^{2}\alpha^{2}/\beta^{2})} = 1

Explanation

Solution

Let P(h,k)P(h,k) be the pole. Then the equation of the polar is ky=2a(x+h)ky = 2a(x + h) or y=2akx+2ahky = \frac{2a}{k}x + \frac{2ah}{k}.

This touches x2α2+y2β2=1\frac{x^{2}}{\alpha^{2}} + \frac{y^{2}}{\beta^{2}} = 1, So (2ahk)2=α2(2ak)2+β2,\left( \frac{2ah}{k} \right)^{2} = \alpha^{2}\left( \frac{2a}{k} \right)^{2} + \beta^{2},

(using c2=a2m2+b2c^{2} = a^{2}m^{2} + b^{2})

4a2h2=4a2α2+k2β24a^{2}h^{2} = 4a^{2}\alpha^{2} + k^{2}\beta^{2}. So, locus of (h,k)(h,k) is

4a2x2=4a2α2+β2y24a^{2}x^{2} = 4a^{2}\alpha^{2} + \beta^{2}y^{2}or x2α2y2(4a2α2β2)=1\frac{x^{2}}{\alpha^{2}} - \frac{y^{2}}{\left( \frac{4a^{2}\alpha^{2}}{\beta^{2}} \right)} = 1