Question
Question: If the polar with respect to \(y^{2} = 4ax\)touches the ellipse \(\frac{x^{2}}{\alpha^{2}} + \frac{y...
If the polar with respect to y2=4axtouches the ellipse α2x2+β2y2=1, the locus of its pole is
A
α2x2−(4a2α2/β2)y2=1
B
α2x2+4a2β2y2=1
C
α2x2+β2y2=1
D
None of these
Answer
α2x2−(4a2α2/β2)y2=1
Explanation
Solution
Let P(h,k) be the pole. Then the equation of the polar is ky=2a(x+h) or y=k2ax+k2ah.
This touches α2x2+β2y2=1, So (k2ah)2=α2(k2a)2+β2,
(using c2=a2m2+b2)
⇒4a2h2=4a2α2+k2β2. So, locus of (h,k) is
4a2x2=4a2α2+β2y2or α2x2−(β24a2α2)y2=1