Solveeit Logo

Question

Question: If the polar of a point w.r.t. \(\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1\) touches the hyperbo...

If the polar of a point w.r.t. x2a2+y2b2=1\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 touches the hyperbola x2a2y2b2=1\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1, then the locus of the point is

A

Given hyperbola

B

Ellipse

C

Circle

D

None of these

Answer

Given hyperbola

Explanation

Solution

Let (x1,y1)(x_{1},y_{1}) be the given point.

Its polar w.r.t. x2a2+y2b2=1\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 is xx1a2+yy1b2=1\frac{xx_{1}}{a^{2}} + \frac{yy_{1}}{b^{2}} = 1 i.e.,

y=b2y1(1xx1a2)=b2x1a2y1x+b2y1y = \frac{b^{2}}{y_{1}}\left( 1 - \frac{xx_{1}}{a^{2}} \right) = - \frac{b^{2}x_{1}}{a^{2}y_{1}}x + \frac{b^{2}}{y_{1}}This touches x2a2y2b2=1\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1

if (b2y1)2=a2.(b2x1a2y1)b2\left( \frac{b^{2}}{y_{1}} \right)^{2} = a^{2}.\left( \frac{b^{2}x_{1}}{a^{2}y_{1}} \right) - b^{2}b4y12=a2b4x12a4y12b2\frac{b^{4}}{y_{1}^{2}} = \frac{a^{2}b^{4}x_{1}^{2}}{a^{4}y_{1}^{2}} - b^{2}

b2y12=b2x12a2y121\frac{b^{2}}{y_{1}^{2}} = \frac{b^{2}x_{1}^{2}}{a^{2}y_{1}^{2}} - 1x12a2y12b2=1\frac{x_{1}^{2}}{a^{2}} - \frac{y_{1}^{2}}{b^{2}} = 1

\therefore Locus of (x1,y1)(x_{1},y_{1}) is x2a2y2b2=1\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1.

Which is the same hyperbola