Question
Question: If the polar of a point w.r.t. \(\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1\) touches the hyperbo...
If the polar of a point w.r.t. a2x2+b2y2=1 touches the hyperbola a2x2−b2y2=1, then the locus of the point is
A
Given hyperbola
B
Ellipse
C
Circle
D
None of these
Answer
Given hyperbola
Explanation
Solution
Let (x1,y1) be the given point.
Its polar w.r.t. a2x2+b2y2=1 is a2xx1+b2yy1=1 i.e.,
y=y1b2(1−a2xx1)=−a2y1b2x1x+y1b2This touches a2x2−b2y2=1
if (y1b2)2=a2.(a2y1b2x1)−b2 ⇒ y12b4=a4y12a2b4x12−b2
⇒ y12b2=a2y12b2x12−1 ⇒ a2x12−b2y12=1
∴ Locus of (x1,y1) is a2x2−b2y2=1.
Which is the same hyperbola